Giải phương trình : \(\frac{4\left(x-1\right)}{4x-3}=\frac{2\left(x+1\right)}{2x-7}\)
Giải phương trình :
\(\left(\frac{8}{3}\right)^{x^2-x+1}\left(\frac{3}{5}\right)^{2x^2-3x+2}\left(\frac{5}{7}\right)^{3x^2-4x+3}\left(\frac{7}{2}\right)^{4x^2-5x+4}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)
\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)
Lấy Logarit cơ số 2 hai vế, ta được :
\(2\left(x-1\right)^2=\left(\log_2105\right)x\)
\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)
\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)
Vậy phương trình đã cho có 2 nghiệm
B1 :Giải phương trình
a,\(\frac{3\left(x-3\right)}{4}-1=\frac{2x+3\left(x+1\right)}{6}-\frac{7+12x}{12}\)
b,\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
c,\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
d,I7-xI-5x=1
B2:Giải bất phương trình
a,\(\left(x-2\right)\left(x+2\right)\ge x\left(x-4\right)\)
b,\(\frac{x-1}{4}-1\ge\frac{x+1}{3}+8\)
Bài 1:Giải phương trình
a)\(10x^2-5x\left(2x+3\right)=15\)
b)\(3x-7-\left(3-4x\right)\left(2x+1\right)=4x\left(2x-7\right)\)
c)\(\left(4x-5\right)^2-\left(7-2x\right)=4\left(2x-4\right)^2+6x\)
Bài 2:Giải phương trình
a)\(\frac{3\left(x-1\right)}{2}+4=\frac{2x}{3}+\frac{4-5x}{6}\)
b)\(\frac{4-x}{7}-\frac{1}{7}\left(\frac{7+3x}{9}+\frac{5-2x}{2}\right)=4-\frac{4x}{3}\)
c)\(\frac{2}{9}\left(2x-5\right)-\frac{5}{3}\left[\left(x-2\right)-\frac{7}{12}\right]=\frac{3}{4}\left(x-3\right)\)
Bài 3:Giải phương trình
a)\(\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\)
b)\(2x\left(x-3\right)+5\left(x-3\right)=0\)
c)\(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
Bài 4:Tìm m để phương trình sau có nghiệm bằng 7:\(\left(2m-5\right)x-2m^2+8=43\)
Bài 5:Giải phương trình
a)\(\left(2x-1\right)^2-\left(2x+1\right)^2=0\)
b)\(\frac{1}{27}\left(x-3\right)^3-\frac{1}{125}\left(x-5\right)^3=0\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Bài 4 xem lại đề nhé bác
bài 1. giải các phương trình sau
a / \(x =(4x+1) (\frac{3x+7}{3-5x}+1)=(x+4)(\frac{3x+7}{5x-3}-1)\)
b/ \(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)1)
bài 2. giải phương trình sau bằng cách đưa về phương trình tích
a/\(\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)
b/ \(\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
c. \(3x^3-3x^2-6x=0\)
cảm ơn mọi người nhiều lắm !
GIẢI PHƯƠNG TRÌNH SAU
A) \(\frac{X^2+2X+1}{X^2+2X+2}+\frac{X^2+2X+2}{X^2+2X+3}=\frac{7}{6}\)
B) \(\frac{\left(X^2-3X-4\right)^4}{\left(X-3\right)^5\left(X+2\right)^3}+\frac{\left(X^2+4X+3\right)^6}{\left(X-3\right)^3\left(X+2\right)^5}=0\)
1 Giải phương trình
\(a.\left(x+3\right)\left(x-2\right)+2\left(x+1\right)^2=\left(x-3\right)^2-2x^2+4x\)
\(b.\left(x+1\right)^3-\left(x+2\right)\left(x-4\right)=\left(x-2\right)\left(x^2+2x+4\right)+2x^2\)
\(c.\frac{x^2+2x+1}{x2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)
\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)
\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)
\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)
Đặt \(t=x^2+2x+2\left(t\ge1\right)\)
\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)
\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)
\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)
Giải các phương trình sau:
a)\(\frac{\left(9x-0.7\right)}{4}-\frac{\left(5x-1.5\right)}{7}=\frac{\left(7x-1.1\right)}{3}-\frac{5\left(0.4-2x\right)}{6}\)
b)\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}=1-\frac{4}{\left(x-1\right)\left(x+3\right)}\)
c)\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=-\frac{7}{6\left(x+5\right)}\)
d)\(\frac{8x^2}{3\left(1-4x\right)^2}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
Tìm điều kiện xác định rồi giải các phương trình sau:
a) \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
b) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
c) \(\frac{8x^2}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
Help me!
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
Giải các phương trình,bất phương trình:
c,\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
d,\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\)
e,\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}-\frac{2}{x^2-4x+3}=0\)
g,\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
i,\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
k,\(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
l,\(\left(x^2-2x+1\right)-4=0\)
m,\(4x^2+4x++1=x^2\)
Xin đáy ai giúp mình đi