cho x,y,z>0. Và x+y+z=1. Chứng minh rằng:
(x/(x+1))+ (y/(y+1))+(z/(z+1))< 3/4
cho x, y,z >0 và 1/x +1/y +1/z =4 chứng minh rằng 1/2x+y+z +1/x+2y+z +1/x+y +2z =< 1
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
\(x+x+y+z\ge4\sqrt[4]{x.x.y.z}\)
=> 2x + y + z \(\ge4\sqrt[4]{x.x.y.z}\) (1)
Với 4 số dương \(\frac{1}{x};\frac{1}{x};\frac{1}{y};\frac{1}{z}\) ta có: \(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge4.\sqrt[4]{\frac{1}{x}.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}\) (2)
Từ (1)(2) => \(\left(2x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4.\sqrt[4]{x.x.y.z}4.\sqrt[4]{\frac{1}{x}.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=16\)
=> \(\frac{1}{2x+y+z}\le\frac{1}{16}.\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\) (*)
Tương tự, ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\) (**)
\(\frac{1}{x+y+2z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\) (***)
Từ (*)(**)(***) => Vế trái \(\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{4}.4=1\)
=> đpcm
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
x+x+y+z≥44√x.x.y.z
=> 2x + y + z ≥44√x.x.y.z (1)
Với 4 số dương 1x ;1x ;1y ;1z ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z (2)
Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16
=> 12x+y+z ≤116 .(2x +1y +1z ) (*)
Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z ) (**)
1x+y+2z ≤116 .(1x +1y +2z ) (***)
Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1
=> đpcm
cho 3 số thực x,y,z>0 thỏa mãn xyz=1 và 1/x+1/y+1/z<x+y+z. Chứng minh rằng có chính xác 1 trong 3 số x, y, z lớn hơn 1
giả sử cả 3 số xyz đều nhỏ hơn 1
=>x+y+z<1+1+1=3
ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3
từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1
cho x/y+z + y/z+x + z/x+y=1 . Chứng minh rằng x^2/y+z + y^2/z+x + z^2/x+y=0
Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x
Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại
+) TH2: x + y + z \(\ne0\)
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)
<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)
cho x, y, z khác 0 và x+y+z khác 0 và 1/x+1/y+1/z=1/x+y+z .
chứng minh 1/x^2015+1/y^2015+1/z^2015=1/x^2015+y^2015+z^2015
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{z\left(x+y+z\right)}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\)(x + y)z(x + y + z) + (x + y)xy = 0
\(\Leftrightarrow\)(x + y) [z(x + y + z) + xy] = 0
\(\Leftrightarrow\)(x + y)[z(x + z) + y(x + z)] = 0
\(\Leftrightarrow\) (x + y)(y + z)(z + x) = 0
Trường hợp 1: x + y = 0\(\Leftrightarrow\)x = -y\(\Leftrightarrow\)x2015 = -y2015\(\Leftrightarrow\)\(\frac{1}{x^{2015}}=-\frac{1}{y^{2015}}\)\(\Leftrightarrow\)\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}=0\)
và x2015 + y2015 = 0. Do đó \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)
Trường hợp 2: y + z = 0 làm tương tự
Trường hợp 3: x + z = 0 làm tương tự
Vậy bài toán được chứng minh.
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy nha
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web
Cho biết \(-1\le x;y;z\le2\) và \(x+y+z=0\). Chứng minh rằng \(x^2+y^2+z^2\le6\)
why in olm math is asked the most
cho các số thực x,y,z khác 0 thỏa mãn
x/2023x+y+z+t = y/x+2023y+z+t = z/x+y+2023z+t = t/x+y+z+2023t
chứng minh rằng biểu thức:
P =(1+ x+y/z+t)^2023 + (1 + y+z/x+y)^2023 + (1 + t+x/y+z)^2023 + (1 + t+x/y+z)^2023
giúp mik vs;-;
Chứng minh biểu thức thế nào em?
Cho x;y;z >0 thỏa mãn x+ y + z ≤ 1. Chứng minh rằng :
\(17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge35\)
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\dfrac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)+\dfrac{18}{x+y+z}\)
\(=17\left(x+y+z\right)+\dfrac{17}{x+y+z}+\dfrac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\dfrac{17}{x+y+z}}+\dfrac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(17x+\dfrac{17}{9x}\ge\dfrac{34}{3}\)
tương tự.....
suy ra
\(17\left(x+y+z\right)+\dfrac{17}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{34}{3}.3=34\)
lại có
\(\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{9}{x+y+z}.\dfrac{1}{9}=1\)
nên
\(17\left(x+y+z\right)+\dfrac{17}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge35\)
cho x,y,z >0;xyz=1.Chứng minh rằng x3/(y+1)(z+1)+y3/(z+1)(x+1)+x3/(y+1)(z+1)≥3/4