tìm m để hàm số có cực đại
\(y=\left(m+2\right)x^3+3x^2-3mx-4\)
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng √2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$
$\Leftrightarrow x^2-2mx+m^2-1=0$
$\Leftrightarrow x=m+1$ hoặc $x=m-1$
Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$
Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$
$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu
$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại
$BO=\sqrt{2}AO$
$\Leftrightarrow BO^2=2AO^2$
$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$
$\Leftrightarrow m=-3\pm 2\sqrt{2}$
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng \(\sqrt{2}\) lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
Cho hàm số : \(y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\left(1\right)\)
Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng \(\sqrt{2}\) lần khoảng cách từ cực tiểu của đồ thị hàm số đến góc tọa độ O
Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)
Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta=1>0\) với mọi m
Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)
Theo giả thiết ta có :
\(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
tìm m để đồ thị hàm số
1) \(y=mx^4+\left(m^2-9\right)x^2+10\) có 3 điểm cực trị
2) \(y=mx^4+\left(2m+1\right)x^2+1\) có một điểm cực tiểu
3) \(y=\left(m+1\right)x^4-mx^2+\dfrac{3}{2}\) chỉ có cực tiểu mà không có cực đại
Tìm m để hàm số
\(y=\left(m+2\right)x^3+3x^2+mx-5\) có cực đại và cực tiểu
Hàm số có cực địa và cực tiểu <=> phương trình y'(x) = 0 có hai nghiệm phân biệt :
\(\Leftrightarrow3\left(m+2\right)x^2+6x+m=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\begin{cases}m+2\ne0\\\Delta'=-3m^2-6m+9>0\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-2\\m^2+2m-3< 0\end{cases}\) \(\Leftrightarrow-3< m\ne-2< 1\)
Tìm m để hàm số \(y=mx^3+3mx^2-\left(m-1\right)x-1\) không có cực trị
Ta có \(y'=3mx^2+6mx^2-m+1\)
\(\Rightarrow y'=0\Leftrightarrow3mx^2+6mx-m+1=0\left(2\right)\)
* m = 0 khi đó (2) trở thành 1 = 0 vô lí, suy ra hàm không có cực trị
* \(m\ne0\) khi đó để hàm không có cực trị thì (2) có nghiệm kép hoặc vô nghiệm \(\Leftrightarrow\Delta'=3m\left(4m-1\right)\le0\Leftrightarrow0< m\le\frac{1}{4}\)
Vậy \(0< m\le\frac{1}{4}\) thì hàm số không có cực trị
Tìm m để hàm số : \(y=\left(x-m\right)\left(x^2-3x-m-1\right)\) có cực đại và cực tiểu thoản mãn \(\left|x_{CD}-x_{CT}\right|\ge\frac{\sqrt{52}}{3}\)
Ta có: y'= x2 - 3x - m -1 + (2x - 3)( x - m) = 3x2 - (2m + 6)x + 2m-1
y'=0 ↔ 3x2 - (2m + 6)x + 2m-1 = 0 (1)
Để hàm số y= (x - m)( x2 - 3x - m - 1) có cực đại và cực tiểu thì phương trình y'=0 có 2 nghiệm phân biệt ↔ phương trình (1) có 2 nghiệm phân biệt ↔ Δ' > 0 ↔ (m+3)2 - 3(2m-1) >0 ↔ m2 + 12 > 0 ( mọi m)
→ Hầm số luôn có cả cực đại và cực tiểu.
Gọi x1 và x2 là 2 nghiệm của phương trình (1)
Khi đó, theo định lý Vi-ét, nghiệm của phương trình (1) là: x1 + x2 = ( 2m+6)/3 ; x1x2= (2m -1)/3
Theo bài ra, ta có: | xCĐ - xCT| \(\ge\frac{\sqrt{52}}{3}\)
↔| x1 - x2| \(\ge\frac{\sqrt{52}}{3}\) ↔ 9| x1 - x2|2 \(\ge\) 52 ↔ 9( x1 + x2)2 - 36x1x2 \(\ge\) 52
↔ m2 \(\ge\) 1
→ \(m\ge1\) hoặc \(m\le-1\)
Hàm số xác định trên R
Ta có \(y'=3x^2-2\left(m+3\right)x+2m-1\)
\(\Rightarrow y'=0\Leftrightarrow3x^2-2\left(m+3\right)x+2m-1=0\left(1\right)\)
Hàm số có 2 điểm cực trị thỏa mãn \(\left|x_{CD}-x_{CT}\right|\ge\frac{\sqrt{52}}{3}\Leftrightarrow\) phương trình (1) có 2 nghiệm \(x_1;x_2\) thỏa mãn \(\left|x_1-x_2\right|\ge\frac{\sqrt{52}}{3}\) \(\Leftrightarrow\begin{cases}\Delta'=m^2+7>0\\\left(x_1+x_2\right)^2-4x_1x_2\ge\frac{52}{9}\end{cases}\)
Theo định lý Viet ta có : \(\begin{cases}x_1+x_2=\frac{2\left(m+3\right)}{3}\\x_1x_2=\frac{2m-1}{3}\end{cases}\)
Suy ra \(\left(\frac{2\left(m+3\right)}{3}\right)^2-4\frac{2m-1}{3}\ge\frac{52}{9}\)
\(\Leftrightarrow4m^2-4\ge0\Leftrightarrow m\in\)(-\(\infty;-1\)] \(\cup\) [\(1;+\infty\))
Vậy m\(\in\)(-\(\infty;-1\)] \(\cup\) [\(1;+\infty\))
Tìm m để hàm số \(f\left(x\right)=x^3-3x^2+m^2x+m\) có cực đại và cực tiểu đối xứng nhau qua \(\left(\Delta\right):y=\frac{1}{2}x-\frac{5}{2}\)
Hàm số có cực đại, cực tiểu \(\Leftrightarrow f'\left(x\right)=3x^2-6x+m^2=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=9-3m^2>0\Leftrightarrow\left|m\right|<\sqrt{3}\)
Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :
\(f\left(x\right)=\frac{1}{3}\left(x-1\right)f'\left(x\right)+\frac{2}{3}\left(m^2-3\right)x+\frac{m}{3}+m\)
Với \(\left|m\right|<\sqrt{3}\) thì phương trình \(f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)
Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) nên :
\(y_1=f\left(x_1\right)=\frac{2}{3}\left(m^2-3\right)x_1+\frac{m^2}{3}+m\)
\(y_2=f\left(x_2\right)=\frac{2}{3}\left(m^2-3\right)x_2+\frac{m^2}{3}+m\)
=> Đường thẳng đi qua cực đại, cực tiểu là \(\left(d\right):y=\frac{2}{3}\left(m^2-3\right)x+\frac{m^2}{3}+m\)
Các điểm cực trị \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\) đối xứng nhau qua \(\left(\Delta\right):y=\frac{1}{2}x-\frac{5}{2}\)
\(\Leftrightarrow\left(d\right)\perp\left(\Delta\right)\) tại trung điểm I của AB (*)
Ta có \(x_1=\frac{x_1+x_2}{2}=1\) suy ra từ (*) \(\Leftrightarrow\begin{cases}\frac{2}{3}\left(m^2-3\right)\frac{1}{2}=-1\\\frac{2}{3}\left(m^2-3\right).1+\frac{m^2}{3}+m=\frac{1}{2}.1-\frac{5}{2}\end{cases}\)
\(\Leftrightarrow\begin{cases}m=0\\m\left(m+1\right)=0\end{cases}\)
\(\Leftrightarrow m=0\)