Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
HT.Phong (9A5)
18 tháng 8 2023 lúc 18:21

a) \(log_69+log_64=log_636=2\)

b) \(log_52-log_550=log_5\left(2:50\right)=-2\)

c) \(log_3\sqrt{5}-\dfrac{1}{2}log_550=-1,0479\)

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 0:46

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

Buddy
Xem chi tiết
HT.Phong (9A5)
18 tháng 8 2023 lúc 18:10

a) \(log_50,5=-0,439677\)

c) \(In\left(\dfrac{3}{2}\right)=0,405465\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 23:12

a: \(log_{\dfrac{1}{4}}8=log_{2^{-2}}2^3=\dfrac{-3}{2}\cdot log_22=-\dfrac{3}{2}\)

b: \(log_45\cdot log_56\cdot log_68\)

\(=log_45\cdot\dfrac{log_46}{log_45}\cdot\dfrac{log_48}{log_46}\)

\(=log_48=log_{2^2}2^3=\dfrac{3}{2}\)

Buddy
Xem chi tiết
HaNa
18 tháng 8 2023 lúc 18:21

a)

Điều kiện để $1-2x > 0$ (đối số dương) là:

$1 > 2x$

$x < \frac{1}{2}$

Vậy, để biểu thức $log_3(1-2x)$ có nghĩa, giá trị của $x$ phải nhỏ hơn $\frac{1}{2}$.

HaNa
18 tháng 8 2023 lúc 18:22

b)

Điều kiện để $x+1 \neq 0$ và $x+1 \neq 1$ là:

$x \neq -1$ và $x \neq 0$

Vậy, để biểu thức $log_{x+1}5$ có nghĩa, giá trị của $x$ không được bằng -1 hoặc 0.

Buddy
Xem chi tiết
HT.Phong (9A5)
18 tháng 8 2023 lúc 18:18

a) \(log_216=4\)

b) \(log_3\dfrac{1}{27}=-3\)

c) \(log1000=3\)

d) \(9^{log_312}=144\)

Buddy
Xem chi tiết
HT.Phong (9A5)
18 tháng 8 2023 lúc 18:23

a) \(log_29\cdot log_34=4\)

b) \(log_{25}\cdot\dfrac{1}{\sqrt{5}}=-\dfrac{1}{4}\)

c) \(log_23\cdot log_9\sqrt{5}\cdot log_54=\dfrac{1}{2}\)

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 9:12

\(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}=\dfrac{a^2\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{4}{5}}}{a^{\dfrac{1}{4}}}=\dfrac{a^{\dfrac{47}{15}}}{a^{\dfrac{1}{4}}}=a^{\dfrac{173}{60}}\)

\(\Rightarrow log_a\left(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}\right)=log_a\left(a^{\dfrac{173}{60}}\right)=\dfrac{173}{60}\)

\(a^{2log_a\left(\dfrac{\sqrt{105}}{30}\right)}=a^{log_a\left(\dfrac{7}{60}\right)}=\dfrac{7}{60}\)

Vậy \(B=\dfrac{173}{60}+\dfrac{7}{60}=\dfrac{180}{60}=3\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 19:11

a) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)

Với \(x = 2\) thì \(y = {\log _2}2 = 1\)

Với \(x = 4\) thì \(y = {\log _2}4 = 2\)

b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.