Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quynh Existn
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2021 lúc 15:43

Lớp 9 nên coi như các góc này đều nhọn

a.

\(cosa=\sqrt{1-sin^2a}=\dfrac{15}{17}\)

\(tana=\dfrac{sina}{cosa}=\dfrac{8}{15}\)

\(cota=\dfrac{1}{tana}=\dfrac{15}{8}\)

b.

\(1+cot^2a=\dfrac{1}{sin^2a}\Rightarrow sina=\dfrac{1}{\sqrt{1+cot^2a}}=\dfrac{4}{5}\)

\(cosa=\sqrt{1-sin^2a}=\dfrac{3}{5}\)

\(tana=\dfrac{1}{cota}=\dfrac{4}{3}\)

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 23:17

a) \(\cos=\sqrt{1-\sin^2}=\sqrt{1-\dfrac{64}{289}}=\dfrac{15}{17}\)

\(\tan=\dfrac{\sin}{\cos}=\dfrac{8}{17}:\dfrac{15}{17}=\dfrac{8}{15}\)

\(\cot=\dfrac{\cos}{\sin}=\dfrac{15}{17}:\dfrac{8}{17}=\dfrac{15}{8}\)

Ank Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2023 lúc 15:44

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

Nguyễn Hà Lan Anh
Xem chi tiết
Đoàn Đức Hà
24 tháng 6 2021 lúc 16:44

a) \(\frac{1}{cos^2x}=1+tan^2x=1+\frac{9}{16}=\frac{25}{16}\)

\(\Leftrightarrow cos^2x=\frac{16}{25}\Leftrightarrow\orbr{\begin{cases}cosx=\frac{4}{5}\\cosx=\frac{-4}{5}\end{cases}}\)

\(cosx=\frac{4}{5}\)

\(sinx=cosxtanx=\frac{4}{5}.\frac{3}{4}=\frac{3}{5}\)

\(cotx=\frac{1}{tanx}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\).

\(cosx=\frac{-4}{5}\)

\(sinx=cosxtanx=\frac{-4}{5}.\frac{3}{4}=\frac{-3}{5}\)

\(cotx=\frac{1}{tanx}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\).

b)  \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{49}{625}=\frac{576}{625}\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{24}{25}\\cosx=-\frac{24}{25}\end{cases}}\)

\(cosx=\frac{24}{25}\)

\(tanx=\frac{sinx}{cosx}=\frac{\frac{7}{25}}{\frac{24}{25}}=\frac{7}{24}\)

\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\frac{7}{24}}=\frac{24}{7}\)

\(cosx=\frac{-24}{25}\)

\(tanx=\frac{sinx}{cosx}=\frac{\frac{7}{25}}{\frac{-24}{25}}=-\frac{7}{24}\)

\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\frac{7}{24}}=\frac{-24}{7}\)

Khách vãng lai đã xóa
blahblah123
Xem chi tiết
Đoàn Đức Hà
24 tháng 6 2021 lúc 16:13

a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)

\(cosx=\frac{1}{2}\)

\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)

\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

\(cosx=\frac{-1}{2}\)

\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)

\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)

b) Bạn làm tương tự câu a) nha. 

Khách vãng lai đã xóa
An Thúy
Xem chi tiết
Mysterious Person
6 tháng 7 2018 lúc 13:44

bài này không có giới hạn góc sao tìm được bạn .

Anh Hùng Noob
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 8 2023 lúc 19:36

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

Nguyễn Trần Đức Huy
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2022 lúc 14:37

\(tana-5cota+4=0\Rightarrow tana-\dfrac{5}{tana}+4=0\)

\(\Rightarrow tan^2a+4tana-5=0\Rightarrow\left[{}\begin{matrix}tana=1\\tana=-5\end{matrix}\right.\)

\(A=\dfrac{4sina+2cosa}{3sina-cosa}=\dfrac{\dfrac{4sina}{cosa}+\dfrac{2cosa}{cosa}}{\dfrac{3sina}{cosa}-\dfrac{cosa}{cosa}}=\dfrac{4tana+2}{3tana-1}=\left[{}\begin{matrix}3\\\dfrac{9}{8}\end{matrix}\right.\)

Thầy Tùng Dương
Xem chi tiết
Cao Thị Kim Ngân
18 tháng 7 2022 lúc 10:42

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alpha Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}.

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}.

Phong Vũ
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2021 lúc 8:01

Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)

2.

\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)

\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)

3.

\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)

4.

\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)

5.

\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)

\(=tan^2x+1+tan^2x=1+2tan^2x\)