Tìm giá trị lớn nhất hoặc nhỏ nhất của đa thức
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của đa thức sau :
-5x² + x - 7
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của đa thức sau :
- 25x² + x + 3
A=...
dăt 5x=y viet cho gon
x=y/5
-A=y^2-y/5+3
=(y-1/10)^2+3-1/100
A=-(y-1/10)^2-299/100
GTLN=-299/100 khi y=1/10
Tìm giá trị lớn nhất hoặc nhỏ nhất của đa thức sau:
\(\dfrac{31}{x^2-3x+11}+15\)
Lời giải:
Ta có:
$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$
$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$
$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$
Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$
Tìm giá trị lớn nhất hoặc nhỏ nhất của đa thức sau
- 5x² + x - 7
\(-5x^2+x-7=-5\left(x^2-\frac{1}{5}x+\frac{7}{5}\right)=-5\left(x^2-2\cdot\frac{1}{10}\cdot x+\frac{1}{100}-\frac{1}{100}+\frac{7}{5}\right)\)
\(=-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\)
\(-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\le\frac{139}{20}\)
GTLN của đa thức trên là 139/20
Tìm giá trị lớn nhất hoặc nhỏ nhất của đa thức sau:
\(C=\dfrac{41}{2x^2-x+9}+2021\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của đa thức B=2x2+10x-1
B=2x2+10x-1
=2(x2+5x-\(\frac{1}{2}\))
=2(x2+2x.\(\frac{5}{2}\)\(+\frac{25}{4}\)\(-\frac{27}{4}\))
=2[(x2+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]
=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\ge\frac{-27}{2}\)(vì (x+5/2)2\(\ge0\))
Dấu = xảy ra khi :
x+\(\frac{5}{2}\)=0
<=>x=\(\frac{-5}{2}\)
Vậy GTNN của B là \(\frac{-27}{2}\)khi x= \(\frac{-5}{2}\)
tìm giá trị nhỏ nhất hoặc lớn nhất của đa thức sau:
2x^2-5x
Tùm giá trị nhỏ nhất hoặc giá trị lớn nhất của đa thức sau :
2x² + 10x - 1
A = 2x^2 +10x - 1
2A = 4x^2 + 20x -1
2A = (2x+5)2 - 26
A = (2x+5)2/2 - 13
A có GTNN thì (2x+5)2/2 = 0
2x+ 5 =0
x = -5/2
Tìm giá trị lớn nhất hoặc nhỏ nhất của các đa thức sau
a, \(\dfrac{2021}{x^2-1x+10}\) b, \(\dfrac{2022}{x^2-x+5}\)
b: Ta có: \(x^2-x+5\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\)
\(\Leftrightarrow\dfrac{2022}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{8088}{19}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)