Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Dương
Xem chi tiết
Nguyên Dương
Xem chi tiết
ngonhuminh
21 tháng 10 2016 lúc 11:05

A=...

dăt 5x=y viet cho gon

x=y/5

-A=y^2-y/5+3

=(y-1/10)^2+3-1/100

A=-(y-1/10)^2-299/100

GTLN=-299/100 khi y=1/10 

Bảo Khánh
Xem chi tiết
Akai Haruma
16 tháng 8 2021 lúc 18:43

Lời giải:

Ta có:

$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$

$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$

$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$

Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$

Nguyên Dương
Xem chi tiết
Cold Wind
20 tháng 10 2016 lúc 20:54

\(-5x^2+x-7=-5\left(x^2-\frac{1}{5}x+\frac{7}{5}\right)=-5\left(x^2-2\cdot\frac{1}{10}\cdot x+\frac{1}{100}-\frac{1}{100}+\frac{7}{5}\right)\)

\(=-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\)

\(-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\le\frac{139}{20}\)

GTLN của đa thức trên là 139/20

Bảo Khánh
Xem chi tiết
Anh Phuong
Xem chi tiết
Minh Triều
28 tháng 5 2015 lúc 10:50

B=2x2+10x-1

=2(x2+5x-\(\frac{1}{2}\))

=2(x2+2x.\(\frac{5}{2}\)\(+\frac{25}{4}\)\(-\frac{27}{4}\))

=2[(x2+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]

=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\ge\frac{-27}{2}\)(vì (x+5/2)2\(\ge0\))

Dấu = xảy ra khi :

x+\(\frac{5}{2}\)=0

<=>x=\(\frac{-5}{2}\)

Vậy GTNN của B là \(\frac{-27}{2}\)khi x= \(\frac{-5}{2}\)

 

Nguyễn Anh Dũng
25 tháng 7 2019 lúc 8:56

Tính GTNN của Biểu thức 

2x2+40x-1

NGỌC PHƯƠNG
Xem chi tiết
Nguyên Dương
Xem chi tiết
Nguyễn Duy Đạt
20 tháng 10 2016 lúc 20:26

A =  2x^2 +10x - 1

2A = 4x^2 + 20x -1

2A = (2x+5)2 - 26

A = (2x+5)2/2 - 13

A có GTNN thì (2x+5)2/2 = 0

2x+ 5 =0

x = -5/2

Viet Vu Dinh
19 tháng 8 2017 lúc 20:56

Sai hết rồi 

Bảo Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 13:48

b: Ta có: \(x^2-x+5\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\)

\(\Leftrightarrow\dfrac{2022}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{8088}{19}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)