Cho tam giác ABC vuông cân tại A,kẻ đường cao Mh, MK( H,K thuộc A,B)
chứng minh: AM2= BH . CK . BC
cho tam giác ABC cân tại A .Gọi M là trung điểm của bc .Kẻ đường cao BP .từ M ,kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
a, chứng minh tam giác ABM = tam giác ACM
b, chứng minh BH =CK
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
Cho tam giác ABC vuông cân tại A. Kẻ AM vuông BC (m thuộc BC). Gọi E là 1 điểm nằm giữa M và C. Kẻ BH, CK vuông góc AE ( H và K thuộc AE)
Chứng minh MH bằng MK
Ta có: \(\Delta ABC\) vuông cân tại A
\(\Rightarrow\hept{\begin{cases}\widehat{BAC}=90^0\\AB=AC\\\widehat{ABC}=\widehat{ACB}=45^0\end{cases}}\)
Lại có: \(\hept{\begin{cases}\widehat{BAH}+\widehat{HAC}=90^0\\\widehat{KCA}+\widehat{HAC}=90^0\end{cases}}\)
\(\Rightarrow\widehat{BAH}=\widehat{KCA}\)
Xét \(\Delta ABH\) và \(\Delta CAK:\)
\(\hept{\begin{cases}\widehat{AHB}=\widehat{CKA}=90^0\\AB=AC\left(cmt\right)\\\widehat{BAH}=\widehat{KCA}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ABH=\Delta CAK\left(ch+gn\right)\)
\(\Rightarrow AH=CK\)
Có: \(\hept{\begin{cases}AM⊥MB\\\widehat{ABM}=45^0\end{cases}}\)
\(\Rightarrow\widehat{MAB}=45^0=\widehat{ACM}\)
\(\Rightarrow\widehat{BAH}-\widehat{BAM}=\widehat{KCA}-\widehat{ACM}\)
\(\Rightarrow\widehat{HAM}=\widehat{KCM}\)
Ta lại có: \(\hept{\begin{cases}AM⊥MC\\\widehat{AMC}=45^0\end{cases}}\)
\(\Rightarrow\widehat{MAC}=45^0\)
\(\Rightarrow\Delta AMC\) vuông cân.\(\Rightarrow MA=MC\)
Xét \(\Delta AMH\) và \(\Delta CMK:\)
\(\hept{\begin{cases}AH=KC\left(cmt\right)\\\widehat{HAM}=\widehat{KCM}\left(cmt\right)\\AM=CM\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta AMH=\Delta CMK\left(c.g.c\right)\)
\(\Rightarrow MK=MH.\)
cho tam giác abc vuông cân tại a. vẽ đường thẳng xy không cắt đoạn thẳng bc, kẻ bh vuông góc với xy(h thuộcxy), kẻ ck vuông góc với xy(K thuộc xy).
a) chứng minh rằng tam giác abh = tam giác ack
b) chứng minh rằng hk=bh+ck
Cho tam giác ABC cân tại A .Kẻ BH vuông góc với AC; CK vuông góc với AB (H thuộc AC; K thuộc AB) a)Chứng minh tam giác AKH là tam giác cân b)Gọi I là giao của BH và CK;AI cắt BC tại M.Chứng minh rằng IM là phân giác của góc BIC c)Chứng minh :HK // BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
Cho tam giác ABC cân tại A. gọi M là trung điểm của BC. kẻ đường cao BP. Từ M, kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
A) chứng minh Tam giác ABM= tam giác ACM
b) chứng minh BH= CK
c) Gọi I là giao điểm của BP và HM. Tam giác IBM là tam giác gì? vì sao?
Nghề của e, ngày nào cx gặp bài này lựa a cho dễ nè :333 b;c tự lm bn nhé !
*) Định lí bổ sung : Trong tam giác cân, đường phân giác suất phát từ đỉnh ứng với cạnh đáy, đồng thời là đường trung tuyến.
Vì \(\Delta\) ABC là \(\Delta\) cân tại A có
AM là đường trung tuyến nên AM vừa là đường cao vừa là đường phân giác
=> \(\widehat{BAM}\) = \(\widehat{MAC}\)
a, Xét \(\Delta\)AMB và \(\Delta\)MAC ta có
\(\widehat{BAM}=\widehat{MAC}\left(cmt\right)\)
AM _ chung
\(\widehat{AMB}=\widehat{AMC}\left(gt\right)\)
=> \(\Delta AMB=\Delta MAC\)(ch-cgv)
a) Vì tam giác ABC là tam giác cân có
AM là đường trugn tuyến
nên AM vừa là đường cao vừa là đường phân giác
=> Góc BAM = góc MAC
Xét ΔAMB và Δ MAC có
góc BAM = góc CAM ( CMT)
AM chung
AMB = góc AMC ( cùng bằng 90 độ )
Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)
b) Xét tam giác AHM và tam giác AKM có
AM chung Góc AHM =AKM ( = 90 độ)
HAM =MAK ( cmt câu a)
nên Tam giác AHM = tam giác AKM (c-h-g-n)
=> HM = MK
và BHM = MKC , góc B= C
Nên tam giác BHM = KMC
=> HB = KC
c) Ta có BP VUÔNG GÓC VỚI AC
và MK vuông góc với AC
Nên BP// MK
=> góc PBM = KMC
Mà KMC = HMB ( vÌ tam giác BHM = KMC )
Suy ra : PBM = góc HMB
Hay tam giác IBM cân tại I
Xét \(\Delta\)ABM và \(\Delta\)ACM có :
\(\hept{\begin{cases}AB=AC\left(gt\right)\\BM=MC\left(gt\right)\\AM\text{ chung}\end{cases}}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
=> \(\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\Rightarrow AM\text{ là phân giác góc A}\Rightarrow MH=MK\)
Xét \(\Delta\)vuông AHM và \(\Delta\)vuông AKM có :
\(\hept{\begin{cases}MH=MK\\MA\text{ chung}\end{cases}\Rightarrow\Delta MHA=\Delta MKA\left(ch-cgv\right)}\)
=> AH = AK (cạnh tương ứng)
Lại có AB = AC
=> AB - AH = AC - AK = BH = CK
Theo CM câu a ⇒∠B=∠C.
Xét ΔMHB và ΔMKC có:
MB=MC(GT)
∠B=∠C(CM trên)
∠H=∠K=90\(^0\)
Do đó ΔMHB=ΔMKC(CH-GN)
⇒BM=CK(cạnh t.ứng)
Theo cm câu trên ⇒MH=MK
Xét ΔAHM và ΔAKM có
HM=KM(cm trên)
H=K=90\(^O\)(gt)
AM là cạnh chung
Do đó ΔAHM=ΔAKM(c.g.c)
⇒AH=AK(canh t.ứng)
Vậy AH=AK và BH=CK
Cho tam giác ABC cân tại A ,kẻ BH vuông góc AC,CK vuông góc AB (H thuộc AC ,k thuộc AB). chứng minh tam giác ABH =Tam giác ACK . Gọi I là giao của BH vaf Ck ,AI cắt BC tại M .chứng minh IM là phân giác
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
=>ΔABH=ΔACK
b: góc KBC+góc ICB=90 độ
góc IBC+góc HCB=90 độ
mà góc KBC=góc HCB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
Cho tam giác ABC vuông tại A, AB = AC. Qua đỉnh A kẻ đường thẳng d bất kì( d không song song với BC). Kẻ BH vuông góc với d(H thuộc d). Kẻ CK vuông góc với d(K thuộc d). Biết BH+CK=HK.Gọi M là trung điểm của BC. Chứng minh: Tam giác HMK vuông tại M và MH=MK.
p/s: ai giỏi toán hình thì giúp mk với vì mai mk đi học rồi và không phải vẽ hình đâu
Em bít ....nhưng mà đợi em lên lớp 7 rùi em giải cho , em mới lớp 6 thui.
Không phải vẽ hình nhưng mình không có hình để làm -_-
Cho tam giác ABC cân tại A ( Â<90°). Kẻ BH vuông góc AC ( H thuộc AC) , CK thuộc AB ( K thuộc AB).BH và CK cắt nhau tại E. a) Chứng minh tam giác BHC = tam giác CKB. b) Chứng minh tam giác ABC cân tại E
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;