Cho tam giác ABC có góc A=\(2\alpha\) \(\left(\alpha
cho tam giác ABC vuonong tị A có AB<Ac, M là trung điểm BC
\(góc ACB=\alpha\), góc AMB =\(\beta\) . CMR: \(\left(cos^2\alpha-sin^2\alpha\right)=cos\beta\)
Ta co:
Vì tam ABC vuông tại A co D là trung điểm BC nên \(\widehat{MAC}=\widehat{MCA}=\frac{\widehat{AMB}}{2}\)
\(\Rightarrow\beta=2\alpha\)
Từ đây ta co:
\(cos^2\alpha-sin^2\alpha=cos\left(2\alpha\right)=cos\beta\)
cho tam giác ABC vuonong tị A có AB<Ac, M là trung điểm BC
\(ACB=\alpha\) , góc AMB =\(\beta\) CMR: \(\left(-sin^2\alpha+cos^2\alpha\right)=sin\beta\)
Ah chăc câu này ghi nhầm đề nên ghi lại câu kia đung không. Thôi xem câu trên đi
Cho tam giác ABC vuoong tại A có C\(=\alpha\)\(\left(\alpha< 45^0\right)\), BC=a. Vẽ trung tuyến AM.Qua A vẽ đg vuôn góc AM cắt BC tại N.C/m \(CN=\frac{a^2.cos^2\alpha}{2cos^2\alpha-1}\)
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\). Gọi \(\alpha \) là số đo của góc nhị diện \(\left[ {A,BC,S} \right]\). Chứng minh rằng tỉ số diện tích của hai tam giác \(ABC\) và \(SBC\) bằng \(\cos \alpha \).
Kẻ \(AH \bot BC\left( {H \in BC} \right)\)
\(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)
\( \Rightarrow BC \bot \left( {SAH} \right) \Rightarrow BC \bot SH\)
Vậy \(\widehat {SHA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,S} \right]\)
\( \Rightarrow \widehat {SHA} = \alpha \)
\(\begin{array}{l}{S_{\Delta ABC}} = \frac{1}{2}BC.AH,{S_{\Delta SBC}} = \frac{1}{2}BC.SH\\ \Rightarrow \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta SBC}}}} = \frac{{\frac{1}{2}BC.AH}}{{\frac{1}{2}BC.SH}} = \frac{{AH}}{{SH}} = \cos \widehat {SHA} = \cos \alpha \end{array}\)
Cho tam giác ABC vuông ở A có AB<AC và trung tuyến AM, góc ACB =\(\alpha\) , góc AMB=\(\beta\) . Chứng minh
\(\left(\sin\alpha+\cos\alpha\right)^2=1+\sin\beta\)
Cho tam giác ABC có góc A=alpha. Chứng minh Sabc= AB.AC.sin alpha
\(SABC=\frac{1}{2}BH\cdot AC\)
ma trong tam giac vuong BHC co \(BH=AB\cdot sinalpha\)
suy ra dien h tam giac ABC =\(\frac{1}{2}AB\cdot AC\cdot sinalpha\) mới đúng bạn ạ
tam giác này vuông ở đâu z bạn???????
Cho tam giác ABC vuông tại A , AB<AC , trung tuyến AM . Đặt góc ACB=\(\alpha\) , góc AMB =\(\beta\) . CM :\(\left(sin\alpha+cos\alpha\right)^2=1+sin\beta\)
Ta có : \(\left(sin\alpha+cos\alpha\right)^2=sin^2\alpha+cos^2\alpha+2sin\alpha.cos\alpha\) (1)
Lại có : \(sin^2\alpha=\frac{AB^2}{BC^2}\) ; \(cos^2\alpha=\frac{AC^2}{BC^2}\) \(\Rightarrow sin^2\alpha+cos^2\alpha=\frac{AB^2+AC^2}{BC^2}=\frac{BC^2}{BC^2}=1\) (2)
Kẻ đường cao AH (H thuộc BC)
Ta sẽ chứng minh \(sin\beta=2sin\alpha.cos\alpha\)
Xét tam giác vuông HMA có : \(sin\beta=\frac{AH}{AM}\)
Lại có \(AH=\frac{AB.AC}{BC}\) ; \(AM=\frac{BC}{2}\) \(\Rightarrow sin\beta=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2sin\alpha.cos\alpha\)(3)
Từ (1) , (2) , (3) ta có điều phải chứng minh.
cho tam giác ABC vuông tại A có AB<AC,vẽ trung tuyến AM của tam giác ABC, góc ACB =\(\alpha\),góc AMB =\(\beta\). CMR:
\(\sin\alpha+\cos\alpha=\sqrt{1+\sin\beta}\)