Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có tam giác ABC vuông tại B. Trong mặt phẳng (SAB) kẻ AM vuông góc với SB tại M. Trên cạnh SC lấy điểm N sao cho \(\dfrac{SM}{SB}=\dfrac{SN}{SC}\). Chứng minh rằng :
a) \(BC\perp\left(SAB\right)\) và \(AM\perp\left(SBC\right)\)
b) \(SB\perp AN\)
Hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại A và có cạnh bên SA vuông góc với mặt phẳng đáy là (ABC). Gọi D là điểm đối xứng của điểm B qua trung điểm O của cạnh AC. Chứng minh rằng \(CD\perp CA,CD\perp\left(SCA\right)\) ?
Trên mặt phẳng \(\left(\alpha\right)\) cho hình bình hàng ABCD. Gọi O là giao điểm của AC và BD, S là một điểm nằm ngoài mặt phẳng \(\left(\alpha\right)\) sao cho SA = SC; SB = SD. Chứng minh rằng :
a) \(SO\perp\left(\alpha\right)\)
b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc với mặt phẳng (SOH)
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B , AB=BC=a . Cạnh bên SA vuông góc với mặt phẳng đáy, SA =a căn 2
a) CM BC vuông SB
b) Xác định và tính góc giữa SC và (ABC)
Cho hình chóp S.ABC, có đáy ABC là tam giác vuông tại A, BC = 2a, đường cao AD = a. SA ⊥ (ABC), SA = a√2
a. Chứng minh rằng BC⊥ (SAD)
b. E,F lần lượt là trung điểm của SB,SC. Chứng minh rằng BC // (AEF) và EF ⊥ (SAD)
c. Tính diện tích tam giác SAB và SAC theo a
Cho tam giác ABC. Gọi \(\left(\alpha\right)\) là mặt phẳng vuông góc với đường thẳng CA tại A và \(\left(\beta\right)\) là mặt phẳng vuông góc với đường thẳng CB tại B. Chứng minh rằng hai mặt phẳng \(\left(\alpha\right)\) và \(\left(\beta\right)\) cắt nhau và giao tuyến d của chúng vuông góc với mặt phẳng (ABC) ?
Cho tứ diện SABC có đáy là tam giác đều cạnh a SA vuông góc với đáy SA=2a. Mặt phẳng (P) qua B vuông góc với SC. Diện tích thiết diện tạo bởi (P) với SABC?
mọi người giải giúp ạ !
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, điểm I và H lần lượt là trung điểm của AB và BC. Trên đoạn CI và SA lần lượt lấy hai điểm M, N sao cho MC=2MI, NA=2NS. Biết \(SH\perp\left(ABC\right)\), chứng minh \(MN\perp\left(ABC\right)\)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A,AB=a√3 , cạnh bên SA vuông góc với mặt đáy , SA = a√3/2 , M là trung điểm của BC. a. Chứng minh BC vuông góc với (SAM) B. Tính góc giữa đường thẳng SM và mặt phẳng (ABC)