Bài 5: Cho tam giác MNP, trung tuyến MI. Trên cạnh MN, lấy hai điểm D, E sao cho MD = DE = EN. Gọi K là giao điểm của MI và PD . Chứng minh: IK = KM.
bài 1: cho tam giác ABC các đường trung tuyến BD, CE. gọi M,N theo thứ tự là trung điểm của BE,CD. gọi I,K theo thứ tự là giao điểm của MN với BD,CE chứng minh rằng MI = IK = KN
bài 2: cho tam giác ABC, M là trung điểm của BC. trên cạnh AB lấy D,E sao cho AD = DE = EB. gọi I là giao điểm của CD và AM. chứng minh I là trung điểm của AM
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
Cho tam giác MNP vuông tại M, trung tuyến MI. Trên tia MI lấy điểm Q sao cho MQ=2MI. Chứng minh NQ//MP. Chứng minh tam giác MNP=tam giác NMQ. Gọi G là trọng tâm của tam giác MNQ. Tính IG biết MN =9cm, NQ = 12cm. Trên tia MQ lấy điểm K sao cho MQ = 3MK. Gọi E là trung điểm của MP. Chứng minh N,K, thẳng hàng
Tình trang gấp 1 ngày nữa thôi ai giải hộ mình bài này:
Cho tam giác MNP vuông tại M, trung tuyến MI. Trên tia MI lấy điểm Q sao cho MQ =2MI :
a) Chứng minh NQ//MP
b) Chứng minh tam giác MNP = tam giác NMQ
c) Gọi G là trọng tâm của tam giác MNQ. Tính IG biết MN=9cm, NQ=12cm
d) Trên tia MQ lấy điểm K sao cho MQ=3MK. Gọi E là trung điểm của MP . Chứng minh N, K, E thẳng hàng
Mình cảm ơn trước
cho tam giác abc, trên cạnh ab lấy điểm m và n sao cho am = mn = nb. gọi k là trung điểm của bc; i là giao điểm của mc và ak. chứng minh mi // nk ,ai=ik ,cho mc=16cm tính mi
Cho tam giác MNQ có MN<MQ.trên cạnh MQ lấy điểm D sao cho MD=MN.Gọi I là trung điểm của ND.
a Chứng Minh Rằng tam giác MNI=tam giác MDI
b gọi k là giao điểm của MI và NQ.Chứng minh rằng NK=KD
c trên tia đối của tia NM lấy điểm E sao cho NE=QD.Chứng MINH Rằng 3 điểm D,K,E thẳng hàng
a) Xét tam giác MNI và tam giác MDI có :
MN = MD ( gt )
NI = ID ( gt )
MI chung
=> đpcm
b) Vì tam giác MNI = tam giác MDI ( cmt )
=> góc NMI = góc DMI ( 2 g.t.ứ )
Xét tam giác MNK và tam giác MDK có :
MN = MD ( gt )
góc NMI = góc DMI ( cmt )
MK chung )
=> tam giác MNK = tam giác MDK ( c-g-c )
=> NK = DK ( 2 c.t.ứ )
=> đpcm
c) Chứng minh tam giác NEK = tam giác DQK ( c-g-c )
=> góc NKE = góc DKQ ( 2 g.t.ứ )
Mặt khác ta có : góc NKD + góc DKQ = 1800 ( kề bù )
=> góc NKD + góc NKE = 1800
Hay góc DKE = 1800
=> D, E, K thẳng hàng ( đpcm )
Chứng Minh tam giác NEK = tam giác DQK kiểu gì hả bạn
Cho tam giác MNP,D thuộc cạnh MP sao cho MD=1/2DP. GọiCho tam giác MNP,D thuộc cạnh MP sao cho MD=1/2DP. GọI K là trung điểm NP, I là giao điểm của ND và MK. CMR MI=MK K là trung điểm NP, I là giao điểm của ND và MK. CMR MI=MK
Bài 5. Cho tam giác MNP có MN = MP. Gọi I là trung điểm của cạnh NP.
a)CMR: tam giác MNI=tam giác MPI, từ đó chứng minh MI vuông góc với NP.
b)Trên tia đối của tia IM lấy điểm Q sao cho IQ = IM. CMR: MN // PQ.
c)Lấy điểm E trên MN và điểm F trên PQ sao cho ME = QF. Chứng minh rằng: Ba điểm E, I, F thẳng hàng.
mik đang càn gaaso :((
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
cho tam giác mnp, i là trung điểm của np. trên tia đối của im lấy điểm k sao cho mi=ik. chứng minh mn=pk và mn//pk
Xét tứ giác `MNPK` có :
\(\left\{{}\begin{matrix}IM=IK\\IN=IP\end{matrix}\right.\)
`=>` tứ giác `MNPK` là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
`=> MN = PK ; MN` // `PK`
Xét tứ giác MNKP có
I là trung điểm của MK và NP
=>MNKP là hình bình hành
=>MN//PK và MN=PK
Cho tam giác MNP cân tại M có đường trung tuyến MI.
a) Chứng minh MI ⊥ NP.
b) Kẻ IQ vuông góc MN (Q thuộc MN) IK vuông góc MP (K thuộc MP ) . Chứng minh IQ = IK và IM là đường trung trực của QK.
c) Trên tia đối tia QI lấy điểm E sao cho QE = QI, trên tia đối tia KI lấy điểm F sao cho
KF=KI. Chứng minh tam giác MEF cân.
d) Chứng minh FE // NP
Bạn tự vẽ hình
`a)`Xét tam giác MNP cân có:MI là trung tuyến
`=>` MI là đường cao
`=>MI bot NP`
`b)` Xét tam giác vuông MIQ và tam giác vuông MIK có:
`MI` chung
`hat{NMI}=hat{PMI}`
`=>DeltaMIQ=DeltaMIK(ch-gn)`
`=>IQ=IK(1)`
`DeltaMIQ=DeltaMIK(ch-gn)`
`=>MQ=MK(2)`
`(1)(2)=>IM` là trung trực QK
Bài khá dài, bạn đọc không hiểu cứ hỏi mình nha!
`c)` Xét tam giác MEI có:MQ vừa là đường cao vừa là trung tuyến
`=>` tam giác MEI cân
`=>ME=MI`
CMTT:Tam giác MFI cân
`=>MF=MI`
`=>ME=MF=MI`
`=>` tam giác MEF cân
`d)` Vì `IQ=IK`
Mà `IE=2IQ,Ì=2IK`
`=>IE=IK`
Mà `ME=MF`
`=>` MI là trung trực của EF
`=>MI bot EF`
Mà `MI bot NP`
`=>FE////NP`