M là 1 điểm bất kì nằm ở miền trong của tứ giác. Chứng minh rằng điểm đối xứng của M qua trung điểm các cạnh của tứ giác là các đỉnh của 1 hình bình hành
Cho tứ giác ABCD. Gọi M, N, P, Q theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Gọi E là điểm bất kì nằm ngoài tứ giác, E là điểm đối xứng với E qua M, G là điểm đối xứng với E qua Q, H là điểm đối xứng với G qua P. Chứng minh rằng E là điểm đối xứng với H qua điểm N
Ta có EBFA, FAGD, GDHC đều là hình hành. Vậy BECH cũng là hình bình hành.
Vậy E đối xứng với H qua N.
Cho tam giác ABC; D là trung điểm của AB; E là trung điểm của AC. Gọi O là điểm bất kì trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, vẽ điểm N đối xứng với O qua E.
a) Chứng minh tứ giác OAMB là hình bình hành
b) Chứng minh OA// CN
c) Chứng minh MNCB là hình bình hành.
a: Xét tứ giác OAMB có
D là trung điểm của AB
D là trung điểm của OM
Do đó: OAMB là hình bình hành
Cho tam giác ABC điểm M nằm trong tam giác, gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB, gọi A', B', C' thứ tự là điểm đối xứng của M qua D, E, F
a, Chứng minh tứ giác AB'A'B là hình bình hành
b, Gọi O là giao điểm của B và B', chứng minh C và C' đối xứng nhau qua điểm O
Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là một điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, vé điểm N đối xứng với O qua E.
Chứng minh rằng MNCB là hình bình hành ?
Tứ giác AOBM có các đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành suy ra :
BM // OA, BM = OA (1)
Chứng minh tương tự ta có :
NC // OA, NC = OA (2)
Từ (1) và (2) suy ra BM // NC, BM = NC
Vậy MNCB là hình bình hành
Cho tam giác ABC vuông tại A có M là trung điểm của BC, I là một điểm bất kì nằm trên AC ( I khác A và C), N là điểm đối xứng của I qua M. a) Chứng minh tứ giác BICN là hình bình hành b) Biết AB = 12cm, AC = 16cm. Tính độ dài AM?.
a, Xét tứ giác BICN có :
BM=MC
IM=MN
do đó tứ giác BICN là hình bình hành ( t/c 2 đường chéo)
b, áp dụng đ/l py-ta-go vào tam giác vuông ABC có :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=20cm\)
lại có \(AM=\dfrac{1}{2}BC\)
\(\Rightarrow AM=\dfrac{1}{2}.20=10cm\)
Cho tam giác ABC vuông tại A . Gọi M N lần lượt là trung điểm của các cạnh BC và AC . Gọi D là điểm đối xứng của N qua M .
a) Chứng minh tứ giác BDCN là hình bình hành
b) Chứng minh tứ giác ABDN là hình chữ nhật
c) Chứng minh Sabc = 2Sabm
EM CẦN GẤP Ý B C NÊN AI GIÚP EM VỚI :((
\(a,\) Vì M là trung điểm ND và BC nên BDCN là hình bình hành
\(b,\) Vì BDCN là hình bình hành nên \(BD\text{//}NC\) hay \(BD\text{//}NA\) và \(BD=NC=NA\) (N là trung điểm AC)
Do đó ABDN là hình bình hành
Mà \(\widehat{BAC}\equiv\widehat{NAB}=90^0\) nên ABDN là hình chữ nhật
\(c,\) Kẻ đường cao AH
\(\Rightarrow\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH.2BM=AH.BM\\S_{ABM}=\dfrac{1}{2}AH.BM\end{matrix}\right.\\ \Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AH.BM}{2AH.BM}=\dfrac{1}{2}\\ \Rightarrow S_{ABC}=2S_{ABM}\)
Giúp mik vs ak !
Cho tam giác ABC vuông ở C. Gọi M, N lần lượt là trung điểm của các cạnh BC và AB. Gọi P là điểm đối xứng của M qua N.
a, Chứng minh tứ giác MBPA là hình bình hành; CM tứ giác PACM là hình chữ nhật
b, Đường thẳng CN và PB ở Q. CM BQ=2PO
Bổ sung câu c:
Tam giác ABC cần có thêm điều kiện gì thì hình chữ nhật PACM là hình vuông.
Cho tam giác ABC điểm M nằm trong tam giác, gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB, gọi A', B', C' thứ tự là điểm đối xứng của M qua D, E, F
a, Chứng minh tứ giác AB'A'B là hình bình hành
b, Gọi O là giao điểm của B và B', chứng minh C và C' đối xứng nhau qua điểm O, vẽ hình giúp mình vs chỉ cần vẽ hình thôi nhé mn
Cho tam giác nhọn ABC , Các đường cao BM và CN cắt nhau ở H. Gọi P là trung điểm của BC . Gọi D là điểm đối xứng của H qua P
a ) Chứng minh rằng : Tứ giác BIDCD là hình bình hành
b ) Chứng minh rằng tứ giác BMCD là hình thang vuông
c ) Nếu tứ giác BDCH là hình chữ nhật thì tam giác ABC là tam giác gì ? vì sao ?