Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Anh
Xem chi tiết
mon wang
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Phương An
29 tháng 7 2017 lúc 11:05

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\left(x\ge2\right)\)

\(\Leftrightarrow\sqrt{x-2}-3\sqrt{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

(+) x - 2 = 0

<=> x = 2 (nhận)

(+) \(1-3\sqrt{x+2}=0\)

\(\Leftrightarrow9\left(x+2\right)=1\)

\(\Leftrightarrow x=\dfrac{1}{9}-2\)

\(\Leftrightarrow x=-\dfrac{17}{9}\) (loại)

TFBoys
29 tháng 7 2017 lúc 22:08

a) Bình phương lên thôi

Đk: \(x\ge1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Rightarrow\left(x-1\right)+\left(5x-1\right)-2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x-2\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x\)

\(\Leftrightarrow4\left(x-1\right)\left(5x-1\right)=9x^2\) (vì \(x\ge1\))

\(\Leftrightarrow11x^2-24x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{11}\end{matrix}\right.\)

Thử lại thấy ko thỏa mãn

Vậy pt vô nghiệm.

阮芳邵族
Xem chi tiết
Ngô Bá Hùng
31 tháng 8 2019 lúc 15:23

\(\frac{-1}{3}\le x\le6\\ \sqrt[]{3x+1}-4-\left(\sqrt[]{6-x}-1\right)+3x^2-14x-5=0\\ \Leftrightarrow\frac{3x-15}{\sqrt[]{3x+1}+4}+\frac{x-5}{\sqrt[]{6-x+1}}+\left(x-5\right)\left(3x+1\right)=0\\ \Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt[]{3x+1}}+\frac{1}{\sqrt[]{6-x}+1}+3x-1\right)=0\)

do\(x\ge\frac{-1}{3}\Rightarrow3x+1\ge0\\ \frac{3}{\sqrt[]{3x+1}}+\frac{1}{\sqrt[]{6-x}+1}+3x-1>0\\ \Rightarrow x=5\)

Dang The Cong
Xem chi tiết
Mr Lazy
15 tháng 11 2015 lúc 16:51

\(pt\Leftrightarrow\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)

\(\Leftrightarrow\frac{3x+1-16}{\sqrt{3x+1}+4}+\frac{1-\left(6-x\right)}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}+3x+1\right]=0\)

\(\Leftrightarrow x=5.\)

Gia Linh Trần
Xem chi tiết
Nguyễn Thị Thùy Dương
26 tháng 11 2015 lúc 21:18

\(3\left(x^2-3x+2\right)+\sqrt{3}\left(\sqrt{x^4+x^2+1}-\sqrt{3}\right)=0\)

\(3\left(x-1\right)\left(x-2\right)+\sqrt{3}.\frac{x^4+x^2-2}{\sqrt{x^4+x^2+1}+\sqrt{3}}=0\)

\(3\left(x-1\right)\left(x-2\right)+\sqrt{3}.\frac{\left(x-1\right)\left(x^3+x^2+2x+2\right)}{\sqrt{x^4+x^2+1}+\sqrt{3}}=0\)

tamanh nguyen
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 11:05

\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)

giang ho dai ca
Xem chi tiết
Trần Tuyết Như
22 tháng 5 2015 lúc 21:24

mình giải bằng casio ra x = 0,767591877

Lê Hải Anh
13 tháng 12 2018 lúc 20:53

sao bạn lại có chữ hiệp sĩ ở bên cạnh tên vậy?

sao vậy bạn

k mk nha

tth_new
16 tháng 6 2019 lúc 9:07

Em thử ạ!

Đặt \(\sqrt[3]{3x^2-x+2011}=a;\sqrt[3]{3x^3-7x+2002}=b;\sqrt[3]{6x-2003}=c\)

Thì được: \(a^3-b^3-c^3=2002\) (1)

Mặt khác theo đề bài \(\left(a-b-c\right)^3=2002\) (2)

Từ (1) và (2) ta được: \(a^3-b^3-c^3-\left(a-b-c\right)^3=0\)

\(\Leftrightarrow3\left(b-a\right)\left(c-a\right)\left(c+b\right)=0\)

\(\Leftrightarrow a=b\text{ hoặc: }c=a\text{ hoặc }c+b=0\)

+) Với a=  b thì \(a^3=b^3\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)

\(\Leftrightarrow6x-1=0\Leftrightarrow x=\frac{1}{6}\)

... Anh làm tiếp thử ạ.

Sakura
Xem chi tiết
Nguyễn Thành Trương
4 tháng 9 2019 lúc 7:43

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.