Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
song thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2023 lúc 8:05

\(=\dfrac{3x^2-x+3-x^2+2x-1-2x^2-2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{-x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-1}{x^2+x+1}\)

Huỳnh Thị Thanh Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 0:36

\(\left(x-1\right)^3+3\left(x-1\right)^2\cdot x+3\left(x-1\right)\cdot x^2+x^3\)

\(=\left(x-1+x\right)^3\)

\(=\left(2x-1\right)^3\)

Lưu Quý Lân
Xem chi tiết
Ƹ̴Ӂ̴Ʒ ♐  ๖ۣۜMihikito ๖ۣ...
26 tháng 9 2017 lúc 21:15

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1-3x^3-3x\)

\(=-x^3+3x\)

Đinh Cẩm Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 3 2021 lúc 22:12

TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)

 

🌼K.L🌼
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 19:30

\(=4x^2+4x-5x-5-\left(3x^2+x+9x+3\right)\)

\(=4x^2-x-5-3x^2-10x-3=x^2-11x-8\)

LONG VAN
Xem chi tiết
LONG VAN
3 tháng 10 2021 lúc 20:54

giúp mik với

Nguyễn Lê Phước Thịnh
3 tháng 10 2021 lúc 20:55

\(\left(x-1\right)^3-3x\left(x-1\right)^2+3x^2\left(x-1\right)+x^3\)

\(=x^3-3x^2+3x-1+3x^3-3x^2+x^3-3x\left(x^2-2x+1\right)\)

\(=5x^3-6x^2-1-3x^3+6x^2-3x\)

\(=2x^3-3x-1\)

Dung Trần
Xem chi tiết
Hiếu Lê Đức
Xem chi tiết
Trần Tuấn Hoàng
14 tháng 3 2022 lúc 17:38

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

Trần Thị Hà Phương
Xem chi tiết
ngonhuminh
29 tháng 11 2016 lúc 20:41

\(A=\frac{\left[x\left(x^2-x+1\right)\right]-\left[\left(x+1\right)\left(3-3x\right)\right]+\left[x+4\right]}{x^3+1}\)

\(A=\frac{\left(x^3-x^2+x\right)+3\left(x^2-1\right)+\left(x+4\right)}{x^3+1}=\frac{x^3+2x^2+2x+1}{x^3+1}\)

\(A=\frac{\left(x^3+1\right)+2x\left(x+1\right)}{x^3+1}=1+\frac{2x}{x^2-x+1}\)

TFboys_Lê Phương Thảo
29 tháng 11 2016 lúc 21:01

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x\left(x^2-x+1\right)-\left(3+3x\right)\left(x+1\right)+\left(x+4\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-9x-3-3x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2-3x^2+x-9x+x+3+4}{x^3+1}\)

\(A=\frac{x^3+2x^2-4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

ngonhuminh
29 tháng 11 2016 lúc 21:30

C/m A>0

\(1+\frac{2x}{x^2-x+1}>0\)

x^2-x+1=(x-1/2)^2+3/4>3/4  ,moi x

neu x>=0 hien nhien A>1 tat nhien lon hon 0

xet x<0

can c/m !2x!<!x^2-x+1!

-2x<x^2-x+1

 <=> x^2+x+1>0

<=> (x+1/2)^2+3/4>0 hien nhien dung