TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
a) Tìm TXĐ của biều thức. Với giá trị nào của x biểu thức vô nghĩa?
\(\dfrac{2-3x}{\dfrac{3x-2}{5}-\dfrac{x-4}{3}}\)
b) Tìm TXĐ của PT rồi giải PT:
\(\dfrac{3}{4x-20}\) + \(\dfrac{15}{50-2x^2}\) + \(\dfrac{7}{6x+30}\) = 0
Rút gọn biểu thức. Chứng minh rằng biểu thức rút gọn không âm vs mọi giá trị của biến thuộc tập xác định (coi a là hằng):
1 - (\(\dfrac{a+x}{ax-x^2}\) + \(\dfrac{2a+3x}{x^2-a^2}\)) : \(\dfrac{a^4-4x^4}{a^4x-a^2x^3}\)
Tìm TXĐ của cả 2 biểu thức sau, rồi tìm giá trị của x để giá trị của 2 biểu thức = nhau:
\(\dfrac{x+2}{x+3}\) - \(\dfrac{x+1}{x-1}\) và \(\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)
Cho biểu thức A= \(\dfrac{x-1}{2}\) và B = \(\dfrac{1}{x}\)- \(\dfrac{x}{2x+1}\)+\(\dfrac{2x^{2^{ }}-3x-1}{x\left(2x+1\right)}\)với x≠0; x≠ \(\dfrac{-1}{2}\); x ≠ 1
1) Tính giá trị của biểu thức A tại x = 3
2) Rút gọn biểu thức B
3) Đặt C= A:B. Chứng minh C ≥ -1
*note* : Trình bày rõ ràng từng biết hộ mik nhé ^^
Rút gọn biểu thức rồi tìm giá trị x để biểu thức rút gọn âm:
\(\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}\)
Tách phần nguyên của biểu thức sau, rồi tìm giá trị nguyên của x để giá trị của biểu thức cũng là 1 số nguyên:
\(\dfrac{4x^3-3x^2+2x-83}{x-3}\)
P = \(\left(1-\dfrac{x^2}{x^2-x+1}\right):\dfrac{x^2+2x+1}{x^3+1}\)
a)Tìm điều kiện của x để biểu thức P xác định
b)Rút gọn biểu thức P
c)Với giá trị nào của x thì P = 2
d)Tìm các giá trị nguyên của x để P nhận giá trị nguyên
a) Với giá trị nào của x biểu thức sau vô nghĩa? Tìm TXĐ của biểu thức:
\(\dfrac{5x}{x+2}\) - \(\dfrac{3}{x-1}\) + \(\dfrac{x^2+1}{\left(x-1\right)\left(x+2\right)}\)
b) Giải phương trình:
\(\dfrac{5x-2}{12}\) - \(\dfrac{2x^2+1}{8}\) = \(\dfrac{x-3}{6}\) + \(\dfrac{1-x^2}{4}\)