Cho tam giác vuông tại A phân giác BD ( D thuộc BC ) . kẻ DE vuông giác BC, gọi F là giao điểm của BA và ED. Chứng minh rằng:
a) BD là trung trực của AE
b)DF=DC
c)AD<DC
d)DB+DC<BF+CF
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông BC (E thuộc BC). Gọi F là giao điểm của AB và DE
Chứng minh rằng:
a, BD là trung trực của AE
b, DF = DC
c, AD < DC
d, AE // FC
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trựccủa AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=gócEDC
=>ΔDAF=ΔDEC
=>DF=DC
c: AD=DE
mà DE<DC
nên AD<DC
d: Xet ΔBFC có BA/AF=BE/EC
nên AE//CF
Cho tam giác ABC vuông tại A có BD là phân giác,kẻ DE vuông góc với BC ( E thuộc BC) . Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a) BD là đường trung trực của AE
b) DF=DC
c) AD < DC
nếu được thì vẽ hình luôn hộ mình nhe
a:Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
c: AD=DE
DE<DC
=>AD<DC
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B (D thuộc AC). Kẻ DE vuông góc với BC(E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh:
a. Tam giác ABD = tam giác EBD
b. chứng minh DF = DC
c. chứng minh DA<DC
d. gọi H là giao điểm của BD và CF K là giao điểmtrên tia đối của DFsao cho DK=DF I là điểm trên đoạn thẳng CD sao cho CI=2DI chứng minh rằng ba điểm K,I,H trên thẳng hàng
cho tam giác abc vuông tại a kẻ phân giác BD kẻ DE vuông với BC( E thuộc BC) cho AB cắt DE tại F a,chứng minh BD là trung trực của AE b,chứng minh DF=DCc, chứng minh AD
(a) Xét \(\Delta ABD,\Delta EBD:\left\{{}\begin{matrix}\hat{BAD}=\hat{BED}=90^o\left(gt\right)\\\text{BD chung}\\\hat{EBD}=\hat{ABD}\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\Rightarrow\left\{{}\begin{matrix}BA=BE\\DA=DE\end{matrix}\right.\)
\(\Rightarrow BD\) là đường trung trực của \(AE\left(đpcm\right).\)
(b) Xét \(\Delta ADF,\Delta EDC:\left\{{}\begin{matrix}\hat{DAF}=\hat{DEC}=90^o\left(gt\right)\\AD=DE\left(cmt\right)\\\hat{ADF}=\hat{EDC}\left(\text{đối đỉnh}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\Rightarrow AF=CE.\)
Lại có: \(BA=BE\left(cmt\right)\Rightarrow BA+AF=BE+CE\Leftrightarrow BC=BF\)
\(\Rightarrow\Delta BCF\) cân tại \(B.\)
Ta cũng có: \(\left\{{}\begin{matrix}FE\perp BC\\CA\perp BF\\FE\cap CA=\left\{D\right\}\end{matrix}\right.\Rightarrow BD\) là đường cao thứ ba của \(\Delta BCF\Rightarrow BD\) vừa là đường cao, vừa là đường trung trực của \(CF\Rightarrow DC=DF\left(đpcm\right).\)
Cho ∆ABC vuông tại A có BD là phân giác, kẻ DE ⊥ BC ( E∈BC ). Gọi F là giao điểm của AB và DE. Chứng minh rằng: a) BD là trung trực của AEb) DF = DC c) AD < DC; d) AE // FC.
Ta có tan giác BAD=tam giác BED(ch-gn)
=>BA=BE (tương ứng)
Vậy B cach đều hai đều mút của đoạn thẳng AE
=>BD là trung trực của AE
b)Từ a có tam giác BAD=BED
=>AD=DE(tương ứng)
Vậy ta có tam giác ADF=EDC (cgv-gnk)
=>DC=DF(tương ứng)
c) trong tam giac vuông ADF có AD< DF(vì FD là cạnh huyền và là cạnh lớn nhất trong tam giác vuông)
Mà theo câu b ta có DF=DC
NÊN => AD<DC
=>
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng: BD là đường thẳng trung trực của AE
Xét ΔABD và ΔEBD có:
BD chung
∠ABD = ∠EBD ( do BD ,là tia phân giác của góc ABC )
∠BAD = ∠BED = 90º
Suy ra: ΔABD = ΔEBD (cạnh huyền – góc nhọn) ⇒ BA = BE, DA = DE.
Do BA = BE nên B thuộc đường trung trực của AE.
Do DA = DE nên D thuộc đường trung trực của AE.
Do đó BD là đường trung trực của AE.
Cho ∆ABC vuông tại A, phân giác BD(D thuộc AC) Vẽ DE vuông góc BC( D thuộc BC). Chứng minh rằng a, ∆ABC=∆EBD b, BD là đường trung trực của AE c, Gọi F là giao điểm của BA và ED chứng minh DE
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a)BD là đường trung trực của AE
b)DF = DC
c)AD < DC
d)AE // FC
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng: DF = DC
Xét ΔDAF và ΔDEC có:
DA = DE( chứng minh trên)
∠D1 = ∠D2 ( hai góc đối đỉnh)
∠DAF = ∠DEC = 90º
Suy ra: ΔDAF = ΔDEC (g.c.g) ⇒ DF = DC.