chứng tỏ rằng mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là hai số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng tỏ rằng với mọi số tự nhiên n thì n+2 và 2n+3 là hai số nguyên tố cùng nhau
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là nguyên tố cùng nhau
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Chúc bạn học tốt!^_^
trong câu hỏi tương tự đó bn!!!!
787685999679
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
1, chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Chúc bạn học tốt!^_^
Chứng tỏ rằng với mọi số tự nhiên n, hai số n+2 và 2n+3 là hai số nguyên tố cùng nhau
Gọi d là Ước chung lớn nhất của chúng ta có
n+2 chia hết cho d
2n+3 chia hết cho d
=>n+2-2n+3 chia hết cho d
=>2(n+2)-2n+3 chia hết cho d
=>2n+4-2n+3 chia hết cho d
=>1 chia hết cho d
=> d=1
Vậy ước chung của 2 số trên là 1 nên 2 số đó là 2 số nguyên tố cùng nhau
Gọi d là ƯC (n + 2; 2n + 3) ( d ∈ N ) Nên ta có :
n + 2 ⋮ d và 2n + 3 ⋮ d
<=> 2(n + 2) ⋮ d và 1(2n + 3) ⋮ d
<=> 2n + 4 ⋮ d và 2n + 4 ⋮ d
=> (2n + 4) - (2n + 3) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( n + 2 ; 2n + 3 ) = 1 => n + 2 và 2n + 3 là nguyên tố cùng nhau
Gọi d là ƯCLN (n + 2 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow2n+4-\left(2n+3\right)⋮d\)
\(2n+4-2n-3⋮d\)
\(4-3⋮d\)
\(1⋮d\)\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+2;2n+3\right)=1\)
Vậy với mọi số tự nhiên n thì hai số n + 2 và 2n + 3 là hai số nguyên tố cùng nhau.
Bài 3: Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau: a) 2 +n và 3 +n b) 2n+3 và 3n+5
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
a) Gọi d = ƯCLN(2 + n; 3 + n)
--> (3 + n) - (2 + n) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2 + n và 3 + n nguyên tố cùng nhau
chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau 2n + 3 và n+2 là nguyên tố cùng nhau
các bạn giúp mk nha!
Gọi UCLN 2n + 3, n + 2 là d, khi đó:
\(\hept{\begin{cases}2n+3⋮d\\2\left(n+2\right)⋮d\end{cases}\Rightarrow2n+4-2n-3⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\) do n là số tự nhiên
Vậy (2n + 3,n + 2) = 1 (đpcm)
Gọi ƯCLN \(\left(2n+3;n+2\right)\) là \(d\)
Ta có:
\(\hept{\begin{cases}n+2=2n+4\\2n+3\end{cases}=2n+4-2n+3=d}\)
Mà \(1⋮d\)và \(Ư\left(1\right)\Rightarrow d=1\)
Vậy \(2n+3\)và \(n+2\)là số nguyên tố cùng nhau \(\left(đpcm\right)\)
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a) n + 3 và n + 2;
b) 3n + 4 và 3n + 7;
c) 2n + 3 và 4n+ 8.
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.