tìm nghiệm nguyên của phương trình 2^x-3^y=1
giúp mình với mình cần gấp ạ
Phương trình:
\(2^{x} - 3^{y} = 1 \Rightarrow 2^{x} = 3^{y} + 1\)
Cả hai số \(2^{x}\) và \(3^{y} + 1\) đều là số nguyên dương, vậy \(x \geq 1\), \(y \geq 0\).
Bước 2: Thử với các số nguyên nhỏy = 0:\(2^{x} = 3^{0} + 1 = 1 + 1 = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 1\)
✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right)\)
y = 1:\(2^{x} = 3^{1} + 1 = 4 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 2\)
✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)\)
y = 2:\(2^{x} = 3^{2} + 1 = 9 + 1 = 10 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 10 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
y = 3:\(2^{x} = 3^{3} + 1 = 27 + 1 = 28 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 28 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
y = 4:\(2^{x} = 3^{4} + 1 = 81 + 1 = 82 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 82 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
Bước 3: Kiểm tra tính khả thi tổng quátKhi \(y \geq 3\), \(3^{y} \equiv 0 \left(\right. m o d 9 \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3^{y} + 1 \equiv 1 \left(\right. m o d 9 \left.\right)\)Các lũy thừa của 2: \(2^{x} m o d \textrm{ } \textrm{ } 9\) lặp theo chu kỳ: 2, 4, 8, 7, 5, 1,…Xét \(2^{x} \equiv 1 \left(\right. m o d 3 \left.\right)\) hay \(2^{x} - 1 = 3^{y}\), theo định lý Catalan, nghiệm duy nhất cho phương trình lũy thừa cách nhau 1 là \(\left(\right. x , y \left.\right) = \left(\right. 3 , 2 \left.\right)\) cho phương trình \(3^{2} - 2^{3} = 1\), nhưng ở đây thứ tự khác nên chỉ có các nghiệm nhỏ đã tìm.Do đó, không có nghiệm lớn hơn.
✅ Kết luậnCác nghiệm nguyên của phương trình \(2^{x} - 3^{y} = 1\) là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right) \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)}\)
Cho phương trình x2-2(m-1)x+m2=0 (m là tham số). Tìm m để phương trình:
1) Có nghiệm
2) Có 2 nghiệm phân biệt
3) Có nghiệm kép
4) Vô nghiệm
mấy pn giải giúp mk đi. mk đag cần gấp lắm! cảm ơn mấy pn nhìu!
Bước 1: Tìm \(\Delta\)và rút gọn
Bước 2: Để pt .. <=> \(\Delta\).. 0
Bước 3: Kết luận
Chúc bạn thành công =))))))
Bổ sung thêm bước 2: Là phải giải bất pt hoặc pt nhé
Tìm x, biết
\(\frac{-512}{343}=\left(\frac{-8}{7}\right)^x\)
Giúp mk nha, mk đag cần gấp ạ !! ♥
\(\frac{-512}{343}=\left(\frac{-8}{7}\right)^3\)
\(\Rightarrow x=3\)
\(-\frac{512}{343}=\left(-\frac{8}{7}\right)^x\)
Vì \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^3\)
\(\Rightarrow x=3\)
Tìm nghiệm nguyên của phương trình:
4/x+2/y=1
Giúp em với! Cần gấp ạ!
Tìm nghiệm nguyên của phương trình y^2=1+x+x^2+x^3+x^4
Mấy bạn chuyên toán giúp mình với. Cần gấp
Với x = 0 thì \(y=\pm1\)
Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)
Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)
Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)
Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)
giải phương trình này, ta được: x = -1 haowcj x = 3
Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)
Giải các phương trình nghiệm nguyên :
a, x^2 -4*x*y =23
b,3*x -3*y +2=0
c, 19*x^2 +28*y^2 =729
d,3*x^2 +10*x*y +8*y^2=96
GIẢI GIÚP MK VS!! MK ĐANG CẦN GẤP
CẢM ƠM MN NHIỀU
cho hpt:\(\left\{{}\begin{matrix}2x-y=m-1\\3x+y=4m+1\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(2x^2-3y=2\)
giúp mk với mk cần gấp lắm
\(\left\{{}\begin{matrix}5x=5m\\y=2x-m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=10-m+1=11-m\end{matrix}\right.\)
Thay vào ta đc
\(2m^2-3\left(11-m\right)=2\Leftrightarrow2m^2-33+3m=2\Leftrightarrow2m^2+3m-35=0\Leftrightarrow m=\dfrac{7}{2};m=-5\)
Mk đag cần gấp mn giúp mk vs ạ !
Câu 1 Tìm x , biết
a)\(\sqrt{4\text{x}^2+4\text{x}+1}=6\)
b)\(\sqrt{4\text{x}^2-4\sqrt{7}x+7=\sqrt{7}}\)
c\(\sqrt{x^2+2\sqrt{3}x+3}=2\sqrt[]{3}\)
d)\(\sqrt{\left(x-3\right)^2}=9\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)
d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)
Tìm nghiệm của phương trình : x² -9x +8=0
Ai biết giúp em với ạ em cần gấp
x² - 9x + 8 = 0
Ta có:
a + b + c = 1 + (-9) + 8 = 0
Phương trình có hai nghiệm:
x₁ = 1; x₂ = 8
Vậy S = {1; 8}
=>(x-1)(x-8)=0
=>x=1 hoặc x=8