\(\frac{4}{y}\)=\(\frac{x}{21}\)=\(\frac{2}{7}\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}\)và x-y+z=-10
\(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}\)và x+y-z=-40
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{7}\)và x-y+z=144
\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}\)và x+y+z=72
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\) và x+y-z=21
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
\(\hept{\begin{cases}\frac{xy}{x^2+y^2+6xy}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\\\sqrt{x-1}+\sqrt{y-9}=7\end{cases}}\)
tìm x y z thuộc z biết :
\(a,\frac{-x}{4}=\frac{-2}{x}\)
\(b,\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{7}{21}\)
\(c,\frac{12}{-6}=\frac{x}{5}=\frac{-y}{3}=\frac{Z}{17}\)
-xx=-2x4
-xx=-8
xx=8
x2=8
x= căn bâc của 8
a; \(\dfrac{-x}{4}\) = \(\dfrac{-2}{x}\)
-\(x.x\) = -2.4
-\(x^2\) = -8
\(x^2\) = 8
\(\left[{}\begin{matrix}x=-\sqrt{8}\\x=\sqrt{8}\end{matrix}\right.\)
Vậy \(x\in\) {-\(\sqrt{8}\); \(\sqrt{8}\)}
b; \(\dfrac{-4}{8}\) = \(\dfrac{x}{-10}\) = \(\dfrac{-7}{y}\) = \(\dfrac{7}{21}\)
\(-\dfrac{4}{8}\) = - \(\dfrac{1}{2}\) ≠ \(\dfrac{1}{3}\) = \(\dfrac{7}{21}\)
Vậy pt vô nghiệm
giải hệ phuong trình : \(\hept{\begin{cases}\frac{4}{\sqrt{2x-y}}-\frac{21}{x+y}=\frac{1}{2}\\\frac{3}{\sqrt{2x-y}}+\frac{7-x-y}{x+y}=1\end{cases}}\)
Từ đề\(\Leftrightarrow\hept{\begin{cases}\frac{12}{\sqrt{2x-y}}-\frac{63}{x+y}=\frac{3}{2}\\\frac{12}{\sqrt{2x-y}}+\frac{28}{x+y}-4=1\end{cases}\Rightarrow\frac{63}{x+y}+\frac{3}{2}=\frac{-28}{x+y}+4+4}\)
\(\Leftrightarrow\frac{91}{x+y}=\frac{13}{2}\Leftrightarrow x+y=14\)
\(\text{Từ đề}\Leftrightarrow\hept{\begin{cases}\frac{4}{\sqrt{2x-y}}-\frac{1}{2}=\frac{21}{x+y}\\\frac{21}{x+y}=-\frac{9}{x+y}+3+1\end{cases}}\)
thôi đến đây tự làm giống lúc nãy nha :D
:(( sửa dòng cuối
\(\frac{21}{x+y}=\frac{-9}{\sqrt{2x-y}}+4\)
đm :((
\(\hept{\begin{cases}\frac{4}{\sqrt{2x-y}}-\frac{1}{2}=\frac{21}{x+y}\\-\frac{9}{\sqrt{2x-y}}+3+3=\frac{21}{x+y}\end{cases}\Leftrightarrow-\frac{9}{\sqrt{2x-y}}+6=\frac{4}{\sqrt{2x-y}}-\frac{1}{2}}\)
\(\Leftrightarrow\frac{13}{\sqrt{2x-y}}=\frac{13}{2}\Leftrightarrow\sqrt{2x-y}=2\Leftrightarrow2x-y=4\)
tự tính tiếp :((
Giải pt:\(\hept{\begin{cases}5|x-3|+\frac{12}{x+y}=\frac{21}{2}\\|3-x|+\frac{1}{x+y}=\frac{7}{4}\end{cases}}\)
giải hệ pt
\(\left\{{}\begin{matrix}\frac{8xy}{x^2+6xy+y^2}+\frac{17}{8}\left(\frac{y}{x}+\frac{x}{y}\right)=\frac{21}{4}\\\sqrt{x-16}+\sqrt{y-9}=7\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge16\\y\ge9\end{matrix}\right.\)
Từ pt thứ nhất của hệ:
\(\frac{8xy}{x^2+y^2+6xy}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)
\(\Leftrightarrow\frac{8}{\frac{x}{y}+\frac{y}{x}+6}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\ge2\)
\(\Rightarrow\frac{8}{6+t}+\frac{17}{8}t=\frac{21}{4}\)
\(\Leftrightarrow\frac{17}{8}t^2+\frac{15}{2}t-\frac{47}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-\frac{94}{17}< 0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}=2\Leftrightarrow x^2+y^2=2xy\)
\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)
Thay xuống pt dưới:
\(\sqrt{x-16}+\sqrt{x-9}=7\)
\(\Leftrightarrow\sqrt{x-16}-3+\sqrt{x-9}-4=0\)
\(\Leftrightarrow\frac{x-25}{\sqrt{x-16}+3}+\frac{x-25}{\sqrt{x-9}+4}=0\)
\(\Leftrightarrow...\)
A, CHO \(\frac{X}{4}=\frac{Y}{7}\)VA X .Y=112, TIM X,Y
B, CHO \(\frac{X}{2}=\frac{Y}{5}\)VA X+Y= -21
A:
Đặt \(k=\frac{x}{4}=\frac{y}{7}\)
Ta có :
\(\frac{x}{4}=\frac{y}{7}\Rightarrow\hept{\begin{cases}x=k.4\\y=k.7\end{cases}}\)
Theo bài ra ta có :
\(x.y=112\Rightarrow k.4.k.7=112\Rightarrow28.k^2=112\Rightarrow k^2=4\Rightarrow k=\text{±}2\)
TH1 : k=2
=> \(\hept{\begin{cases}x=2.3\\y=2.7\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}}\)
Th2 : k=-2
\(\Rightarrow\hept{\begin{cases}x=-2.3\\y=-2.7\end{cases}\Rightarrow\hept{\begin{cases}x=-6\\y=-14\end{cases}}}\)
còn câu b thì trong sách có đó
tìm x,y
\(\frac{x+3}{-15}=\frac{1}{3}\)
\(\frac{21}{x}=\frac{y}{16}=\frac{-14}{z}=\frac{7}{4}\)với x,y,z thuộcz sao
\(\frac{-21}{x}\frac{y}{-16}=\frac{81}{z}=\frac{-3}{4}\)với x,y,z \(\in\)z sao
tìm x,y,z biết
a)\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}và5x+y-2z=28\)
b)\(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}và2x+3y-z=124\)
c)\(\frac{x}{2}=\frac{y}{3}vàxy=54\)
d)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}vàx+y+z=49\)
e)\(\frac{x}{5}=\frac{y}{3}vàx^2-y^2=4\)
Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)
d, Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\). Mà theo đề bài, ta có: x + y + z = 49
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12.\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{12x}{18}=\frac{2x}{3}=12\Rightarrow x=18\\\frac{12y}{16}=\frac{3y}{4}=12\Rightarrow y=16\\\frac{12z}{15}=\frac{4z}{5}=12\Rightarrow z=15\end{matrix}\right.\)(TMĐK)
Vậy:\(x=18;y=16;z=15\)
e, Ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\).Mà theo đề bài, ta có: x2 - y2 = 4
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x\in\left\{\frac{5}{2};-\frac{5}{2}\right\}\\\frac{y^2}{9}=\frac{1}{4}\Rightarrow x^2=\frac{9}{4}\Rightarrow x\in\left\{\frac{3}{2};-\frac{3}{2}\right\}\end{matrix}\right.\)(TMĐK)
Vậy:..................................
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) \(\frac{x}{2}=\frac{y}{2}\)và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b) \(\frac{x}{3}=\frac{y}{4}\); \(\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
a) x/5=y/2
= x+y/5+2=21/7=3
=> x/5=3=>x=15
y/2=3=>x=6
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)