Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Meta.vn
Xem chi tiết
Nguyen My Van
23 tháng 5 2022 lúc 11:54

Có \(2x^2+2y^2=5xy\)

\(\Leftrightarrow2x^2-2y^2-5xy=0\)

\(\Leftrightarrow2x^2-4xy-xy+2y^2=0\)

\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=0\\2x-y=0\end{matrix}\right.\)

TH1: Với \(x-2y=0\) hay \(x=2y\) thì:

\(E=\dfrac{2y+y}{2y-y}=\dfrac{3y}{y}=3\) ( loại do \(0< x< y\) nên \(E=\dfrac{x+y}{x-y}< 0\) )

TH2: Với \(2x-y=0\)  hay \(2x=y\) thì:

\(E=\dfrac{x+2x}{x-2x}=\dfrac{3x}{-x}=-3\left(tm\right)\)

Vậy \(E=-3\)

 

Hoài Thu Vũ
Xem chi tiết
Gia Huy
21 tháng 6 2023 lúc 15:55

a)

Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$

Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$

Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.

Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:

$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$

Vậy kết quả là $E=-\frac{5}{3}$.

Gia Huy
21 tháng 6 2023 lúc 16:06
Gia Huy
21 tháng 6 2023 lúc 16:09

đặt $a=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}$, $b=\sqrt[3]{3-2\sqrt{2}}}$

Khi đó:
$$(a+b)^3=a^3+b^3+3ab(a+b)$$
$$a^3+b^3=\left(\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\right)^3+\left(\sqrt[3]{3-2\sqrt{2}}\right)^3= \frac{1}{3-2\sqrt{2}}+(3-2\sqrt{2})=4$$
$$ab=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\cdot\sqrt[3]{3-2\sqrt{2}}=\sqrt[3]{(3-2\sqrt{2})(3+2\sqrt{2})}=\sqrt[3]{1}=1$$
Do đó, ta có:
$$(a+b)^3=4+3ab(a+b)=4+3(a+b)$$
Vậy $2x^3=2(a+b)^3=8+6(a+b)$ và $6x=6(a+b)$.
Thay vào biểu thức $P$, ta được:
$$P=\left(2x^3-6x+2008\right)^{2021}=\left(8+6(a+b)-6(a+b)+2008\right)^{2021}=2016^{2021}$$
Vậy kết quả là $P=2016^{2021}$.

Đức Anh officall
Xem chi tiết
Nguyễn Linh Chi
23 tháng 6 2020 lúc 0:57

Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y

Giải: 

 Cho 2x2+2y2=5xy và 0<x<y. => \(\frac{x}{y}< 1\)

Chia cả hai vế cho y^2 ta có: \(2\left(\frac{x}{y}\right)^2-5\frac{x}{y}+2=0\) (1)

Đặt: t = x/y ta có: 0 < t < 1 

(1) trở thành: \(2t^2-5t+2=0\)

<=> \(\left(2t^2-4t\right)+\left(-t+2\right)=0\)

<=> \(2t\left(t-2\right)-\left(t-2\right)=0\)

<=> \(\left(2t-1\right)\left(t-2\right)=0\)

<=> t = 1/2 ( tm) 

Hoặc  t = 2 loại 

Với t = 1/2 ta có: x/y = 1/2 

<=> y = 2x 

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

Khách vãng lai đã xóa
Jerry Con Cuồng
Xem chi tiết
cat
Xem chi tiết

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y).(2x-y)=0

<=> (x-2y)=0 hoặc 2x-y=0

Nếu x-2y=0 =>x=2y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3

Nếu 2x-y=0 =>2x=y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3

Khách vãng lai đã xóa
Nguyễn Phương Uyên
7 tháng 3 2020 lúc 21:11

2x^2 + 2y^2 = 5xy

<=> 2x^2 + 2y^2 - 5xy = 0

<=> 2x^2  - 4xy + 2y^2 - xy  = 0

<=> 2x(x - 2y) - y(x - 2y) = 0

<=> (2x - y)(x - 2y) = 0

<=> 2x = y hoặc x = 2y

thay vào là xong

Khách vãng lai đã xóa
IS
7 tháng 3 2020 lúc 21:16

\(x>y>0=>\frac{x+y}{x-y}>0\)

=> \(E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)

=>\(E=3\)

Khách vãng lai đã xóa
Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2021 lúc 22:06

b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)

\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)

\(=\dfrac{2y^2+8y+12}{y-1}\)

le van thang
Xem chi tiết
luyen hong dung
19 tháng 4 2018 lúc 16:23

ta có\(2x^2+2y^2=5xy\)

\(\Leftrightarrow2x^2-5xy+2y^2=0\)\(\Leftrightarrow\left(x-4y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4y\\2x=y\end{cases}}\)

\(0< x< y\)\(\Rightarrow x=4y\)là vô lý

\(\Rightarrow2x=y^{\left(1\right)}\)

Thế (1)vào biểu thức E ta được:

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

Vậy biểu thức E có giá trị là 3

Xong rồi đấy nhớ k cho mình nhé!

Crackinh
Xem chi tiết
Thành Vinh Lê
22 tháng 7 2018 lúc 16:36

GT=>(2x-y)(x-2y)=0

Do 0<x<y nên x-2y<0

Do đó 2x-y=0 hay 2x=y

Thay y=2x vào E đượcE=-3

Lê Ng Hải Anh
22 tháng 7 2018 lúc 16:42

Ta có: \(2\left(x^2+y^2\right)=5xy\)

\(x^2+y^2=\frac{5}{2}xy\)

\(E^2=\left(\frac{x+y}{x-y}\right)^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)

Hay: \(\frac{\frac{5}{2}xy+2xy}{\frac{5}{2}xy+2xy}=\frac{4,5xy}{0,5xy}=9\)

\(\Rightarrow E=\sqrt{9}=\pm3\)

vì 0<x<y

=>E=3

ST
22 tháng 7 2018 lúc 16:44

Ta có:\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2+4xy=9xy\Leftrightarrow2\left(x+y\right)^2=9xy\Leftrightarrow\left(x+y\right)^2=\frac{9xy}{2}\) (1)

Mặt khác \(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-4xy=xy\Leftrightarrow2\left(x-y\right)^2=xy\Leftrightarrow\left(x-y\right)^2=\frac{xy}{2}\) (2)

Từ (1) và (2) => \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{\frac{9xy}{2}}{\frac{xy}{2}}\Leftrightarrow\left(\frac{x+y}{x-y}\right)^2=9\Leftrightarrow\frac{x+y}{x-y}=\pm3\)

Mà \(0< x< y\Rightarrow E=\frac{x+y}{x-y}=-3\)

Vậy E=-3

Nguyễn Thị Hà Linh
Xem chi tiết
Kien Nguyen
26 tháng 10 2017 lúc 22:48

bn có viết nhầm 5xy thành 4xy ko

Hoàng Thị Ngọc Mai
19 tháng 3 2018 lúc 20:03

Ta có :

\(2x^2+2y^2=5xy\)

\(\Rightarrow2x^2+2y^2-5xy=0\)

\(\Rightarrow\left(2x^2-4xy\right)+\left(2y^2-xy\right)=0\)

\(\Rightarrow2x\left(x-2y\right)+y\left(2y-x\right)=0\)

\(\Rightarrow\left(x-2y\right)\left(2x-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2y=0\\2x-y=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2y\\2x=y\end{matrix}\right.\)

*) Với \(x=2y\) ta có:

\(M=\dfrac{2y+y}{2y-y}=\dfrac{3y}{y}=3\)

*) Với \(2x=y\) ta có:

\(M=\dfrac{x+2x}{x-2x}=\dfrac{3x}{-x}=-3\)

Vậy \(M=3\) hoặc \(M=-3\)