Cho \(0< x< y\) và \(2x^2+2y^2=5xy\)
Tính \(E=\dfrac{x^2+y^2}{x^2-y^2}\)
Cho \(2x^2+2y^2=5xy\) và \(0< x< y\) Yinhs giá trị của \(E=\dfrac{x+y}{x-y}\)
Có \(2x^2+2y^2=5xy\)
\(\Leftrightarrow2x^2-2y^2-5xy=0\)
\(\Leftrightarrow2x^2-4xy-xy+2y^2=0\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2y=0\\2x-y=0\end{matrix}\right.\)
TH1: Với \(x-2y=0\) hay \(x=2y\) thì:
\(E=\dfrac{2y+y}{2y-y}=\dfrac{3y}{y}=3\) ( loại do \(0< x< y\) nên \(E=\dfrac{x+y}{x-y}< 0\) )
TH2: Với \(2x-y=0\) hay \(2x=y\) thì:
\(E=\dfrac{x+2x}{x-2x}=\dfrac{3x}{-x}=-3\left(tm\right)\)
Vậy \(E=-3\)
a) Cho 0<x<y thỏa mãn \(2x^2+2y^2=5xy\). Tính E=\(\dfrac{x^2+y^2}{x^2-y^2}\)
b) Cho x=\(\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}\)+ \(\sqrt[3]{3-2\sqrt{2}}\). Tính giá trị biểu thức
P=\(\left(2x^3-6x+2008\right)^{2021}\)
a)
Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$
Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$
Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.
Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:
$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$
Vậy kết quả là $E=-\frac{5}{3}$.
đặt $a=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}$, $b=\sqrt[3]{3-2\sqrt{2}}}$
Khi đó:
$$(a+b)^3=a^3+b^3+3ab(a+b)$$
$$a^3+b^3=\left(\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\right)^3+\left(\sqrt[3]{3-2\sqrt{2}}\right)^3= \frac{1}{3-2\sqrt{2}}+(3-2\sqrt{2})=4$$
$$ab=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\cdot\sqrt[3]{3-2\sqrt{2}}=\sqrt[3]{(3-2\sqrt{2})(3+2\sqrt{2})}=\sqrt[3]{1}=1$$
Do đó, ta có:
$$(a+b)^3=4+3ab(a+b)=4+3(a+b)$$
Vậy $2x^3=2(a+b)^3=8+6(a+b)$ và $6x=6(a+b)$.
Thay vào biểu thức $P$, ta được:
$$P=\left(2x^3-6x+2008\right)^{2021}=\left(8+6(a+b)-6(a+b)+2008\right)^{2021}=2016^{2021}$$
Vậy kết quả là $P=2016^{2021}$.
Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y
Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y
Giải:
Cho 2x2+2y2=5xy và 0<x<y. => \(\frac{x}{y}< 1\)
Chia cả hai vế cho y^2 ta có: \(2\left(\frac{x}{y}\right)^2-5\frac{x}{y}+2=0\) (1)
Đặt: t = x/y ta có: 0 < t < 1
(1) trở thành: \(2t^2-5t+2=0\)
<=> \(\left(2t^2-4t\right)+\left(-t+2\right)=0\)
<=> \(2t\left(t-2\right)-\left(t-2\right)=0\)
<=> \(\left(2t-1\right)\left(t-2\right)=0\)
<=> t = 1/2 ( tm)
Hoặc t = 2 loại
Với t = 1/2 ta có: x/y = 1/2
<=> y = 2x
\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)
Bài 1: cho x+y=15 và x^2+y^2=70 tính x^4-y^4
Bài 2: cho 0<x<y và 2x^2+2y^2=5xy
Tính A=x+y/x-y
Pls nhanh dùm e cái
Cho x>y>0 và 2x2+2y2=5xy. Tính : \(E=\frac{x+y}{x-y}\).
2x2+2y2=5xy
<=>2x2-5xy+2y2=0
<=>(2x2-4xy)-(xy-2y2)=0
<=>2x(x-2y)-y(x-2y)=0
<=>(x-2y).(2x-y)=0
<=> (x-2y)=0 hoặc 2x-y=0
Nếu x-2y=0 =>x=2y
=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3
Nếu 2x-y=0 =>2x=y
=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3
2x^2 + 2y^2 = 5xy
<=> 2x^2 + 2y^2 - 5xy = 0
<=> 2x^2 - 4xy + 2y^2 - xy = 0
<=> 2x(x - 2y) - y(x - 2y) = 0
<=> (2x - y)(x - 2y) = 0
<=> 2x = y hoặc x = 2y
thay vào là xong
\(x>y>0=>\frac{x+y}{x-y}>0\)
=> \(E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)
=>\(E=3\)
A = \(\dfrac{5xy^2-3z}{3xy}+\dfrac{4x^2y+3z}{3xy}\)
B = \(\dfrac{3y+5}{y-1}+\dfrac{-y^2-4y}{1-y}+\dfrac{y^2+y+7}{y-1}\)
C = \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}\)
D = \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
E = \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
Cho \(2x^2+2y^2=5xy\)và 0<x<y
Tính giá trị của \(E=\frac{x+y}{x-y}\)
ta có\(2x^2+2y^2=5xy\)
\(\Leftrightarrow2x^2-5xy+2y^2=0\)\(\Leftrightarrow\left(x-4y\right)\left(2x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4y\\2x=y\end{cases}}\)
Vì\(0< x< y\)\(\Rightarrow x=4y\)là vô lý
\(\Rightarrow2x=y^{\left(1\right)}\)
Thế (1)vào biểu thức E ta được:
\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)
Vậy biểu thức E có giá trị là 3
Xong rồi đấy nhớ k cho mình nhé!
Cho : \(2x^2+2y^2=5xy\) .Tính \(E=\frac{x+y}{x-y}\left(0< x< y\right)\)
GT=>(2x-y)(x-2y)=0
Do 0<x<y nên x-2y<0
Do đó 2x-y=0 hay 2x=y
Thay y=2x vào E đượcE=-3
Ta có: \(2\left(x^2+y^2\right)=5xy\)
\(x^2+y^2=\frac{5}{2}xy\)
\(E^2=\left(\frac{x+y}{x-y}\right)^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
Hay: \(\frac{\frac{5}{2}xy+2xy}{\frac{5}{2}xy+2xy}=\frac{4,5xy}{0,5xy}=9\)
\(\Rightarrow E=\sqrt{9}=\pm3\)
vì 0<x<y
=>E=3
Ta có:\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2+4xy=9xy\Leftrightarrow2\left(x+y\right)^2=9xy\Leftrightarrow\left(x+y\right)^2=\frac{9xy}{2}\) (1)
Mặt khác \(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-4xy=xy\Leftrightarrow2\left(x-y\right)^2=xy\Leftrightarrow\left(x-y\right)^2=\frac{xy}{2}\) (2)
Từ (1) và (2) => \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{\frac{9xy}{2}}{\frac{xy}{2}}\Leftrightarrow\left(\frac{x+y}{x-y}\right)^2=9\Leftrightarrow\frac{x+y}{x-y}=\pm3\)
Mà \(0< x< y\Rightarrow E=\frac{x+y}{x-y}=-3\)
Vậy E=-3
Cho x>y>0 và 2x2+2y2=5xy. Tính M=\(\dfrac{x+y}{x-y}\)
Ta có :
\(2x^2+2y^2=5xy\)
\(\Rightarrow2x^2+2y^2-5xy=0\)
\(\Rightarrow\left(2x^2-4xy\right)+\left(2y^2-xy\right)=0\)
\(\Rightarrow2x\left(x-2y\right)+y\left(2y-x\right)=0\)
\(\Rightarrow\left(x-2y\right)\left(2x-y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2y=0\\2x-y=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2y\\2x=y\end{matrix}\right.\)
*) Với \(x=2y\) ta có:
\(M=\dfrac{2y+y}{2y-y}=\dfrac{3y}{y}=3\)
*) Với \(2x=y\) ta có:
\(M=\dfrac{x+2x}{x-2x}=\dfrac{3x}{-x}=-3\)
Vậy \(M=3\) hoặc \(M=-3\)