Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:43

a)

Ta có:

\({\cos ^4}\alpha {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha  - {\sin ^2}\alpha = {\cos ^2}\alpha  - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha  - 1 + {\cos ^2}\alpha  = 2{\cos ^2}\alpha  - 1\)

(đpcm)

b)

Ta có:

\(\frac{{{{\cos }^2}\alpha  + {{\tan }^2}\alpha  - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha  - {{\sin }^2}\alpha  - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha  - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)

(đpcm)

Phan Nguyễn Hoàng Vinh
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2019 lúc 14:32

\(\frac{sin^2a-cos^2a}{sin^2a+cos^2a+2sina.cosa}=\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{\left(sina+cosa\right)^2}=\frac{sina-cosa}{sina+cosa}\)

\(=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}\)

phuong thao
15 tháng 9 2024 lúc 12:06

(tan^2 a)/(1 + tan^2 a) * (1 + cot^2 a)/(cot^2 a) = (1 + tan^4 a)/(tan^2 a + tan^2 a)

Trần Minh Ánh
Xem chi tiết
Nobi Nobita
13 tháng 9 2020 lúc 9:39

a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)

\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)

\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)

\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )

\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Quoc Tran Anh Le
21 tháng 9 2023 lúc 20:46

a)    Ta có:

\(\begin{array}{l}{\sin ^4}\alpha  - {\cos ^4}\alpha  = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha  + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha  - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha  - {\cos ^2}\alpha  - 1 + 2{\cos ^2}\alpha  = 0\\ \Leftrightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)

Đẳng thức luôn đúng

b)    Ta có:

\(\begin{array}{l}\tan \alpha  + \cot \alpha  = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)

Đẳng thức luôn đúng

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 15:16

Tham khảo:

a) 

Gọi M(x;y) là điểm trên đường tròn đơn vị sao cho \(\widehat {xOM} = \alpha \). Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Ta có: \(\left\{ \begin{array}{l}x = \cos \alpha \\y = \sin \alpha \end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}\alpha  = {x^2}\\{\sin ^2}\alpha  = {y^2}\end{array} \right.\)(1)

Mà \(\left\{ \begin{array}{l}\left| x \right| = ON\\\left| y \right| = OP = MN\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x^2} = {\left| x \right|^2} = O{N^2}\\{y^2} = {\left| y \right|^2} = M{N^2}\end{array} \right.\)(2)

Từ (1) và (2) suy ra \({\sin ^2}\alpha  + {\cos ^2}\alpha  = O{N^2} + M{N^2} = O{M^2}\) (do \(\Delta OMN\) vuông tại N)

\( \Rightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) (vì OM =1). (đpcm)

Hà Quang Minh
24 tháng 9 2023 lúc 15:17

b) 

Ta có:  \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}\;\;(\alpha  \ne {90^o})\)

\( \Rightarrow 1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}\)

Mà theo ý a) ta có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) với mọi góc \(\alpha \)

\( \Rightarrow 1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\) (đpcm)

c) 

Ta có:  \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}\;\;\;({0^o} < \alpha  < {180^o})\)

\( \Rightarrow 1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\)

Mà theo ý a) ta có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) với mọi góc \(\alpha \)

\( \Rightarrow 1 + {\cot ^2}\alpha  = \frac{1}{{{{\sin }^2}\alpha }}\) (đpcm)

le thi khanh huyen
Xem chi tiết
Trần Hữu Phước
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 3 2019 lúc 19:47

\(\frac{sin^2a-cos^2a}{1+2sina.cosa}=\frac{\left(sina-cosa\right)\left(sina+cosa\right)}{sin^2a+cos^2a+2sina.cosa}=\frac{\left(sina-cosa\right)\left(sina+cosa\right)}{\left(sina+cosa\right)^2}\)

\(=\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}\)

Đinh Đại Thắng
Xem chi tiết
Nguyễn Hoàng Tiến
Xem chi tiết
Thắng Nguyễn
17 tháng 6 2016 lúc 22:30

a)\(tan3A=tan\left(A+2A\right)\)

\(=\frac{tanA+tan2A}{1-tanAtan2A}\)

\(=\frac{\frac{tanA+2tanA}{1-tan^2A}}{\frac{1-2tan^2A}{1-tan^2A}}\)

\(=\frac{\left(tanA-tan^3A+2tanA\right)}{1-tan^2A-2tan^2A}\)

\(=\frac{3tanA-tan^3A}{1-3tan^2A}\)

b)\(VT=cos^6A+sin^6A\)

\(=\left(cos^2A\right)^3+\left(sin^2A\right)^3\)

\(=\left(cos^2A+sin^2A\right)^3-3cos^2Asin^2A\left(cos^2A+sin^2A\right)^2\)

\(=1^3-3cos^2Asin^2A\left(1\right)^2\).Từ đó,\(sin^2A+cos^2A=1\)

\(=1-3cos^2Asin^2A=VP\)

Thắng Nguyễn
18 tháng 6 2016 lúc 5:58

phần b tui sai