\(\left(x-3\right)^2=25\)
Tìm x liên quan đến lũy thừa:
1, \(\left(3x-\dfrac{1}{5}\right)^2=\left(\dfrac{-3}{25}\right)^2\)
2, \(\left(2x-\dfrac{1}{3}\right)^2=\left(\dfrac{-2}{9}\right)^2\)
3, \(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\)
4, \(\left(5-x\right)^2=25\)
1: \(\left(3x-\dfrac{1}{5}\right)^2=\left(-\dfrac{3}{25}\right)^2\)
=>3x-1/5=3/25 hoặc 3x-1/5=-3/25
=>3x=8/25 hoặc 3x=2/25
=>x=8/75 hoặc x=2/75
2: \(\left(2x-\dfrac{1}{3}\right)^2=\left(-\dfrac{2}{9}\right)^2\)
=>2x-1/3=2/9 hoặc 2x-1/3=-2/9
=>2x=5/9 hoặc 2x=1/9
=>x=5/18 hoặc x=1/18
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?
Rút gọn biểu thức:
\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+3\right)^3+\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3\)
Ta có: \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+3\right)^3+\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3\)
\(=x^3+125-x^3-9x^2-27x-27+x^3-8-x^3+3x^2-3x+1\)
\(=-6x^2-30x+91\)
1, \(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\)
2, \(\left(5-x\right)^2=25\)
1.\(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{3}-x=\dfrac{3}{5}\\\dfrac{1}{3}-x=-\dfrac{3}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{15}\\x=\dfrac{14}{15}\end{matrix}\right.\)
2.\(\left(5-x\right)^2=25\Leftrightarrow\left[{}\begin{matrix}5-x=5\\5-x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
a) \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)
b) \(\left(4x-1\right)\left(x+5\right)=x^2-25\)
c) \(x\left(x+3\right)^3-\dfrac{x}{4}\left(x+3\right)=0\)
a) Ta có: \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(\dfrac{3x-16x-20}{12}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\cdot\left(-13x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\-13x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\-13x=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\dfrac{-20}{13}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;-4;\dfrac{-20}{13}\right\}\)
b) Ta có: \(\left(4x-1\right)\left(x+5\right)=x^2-25\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1-x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;\dfrac{-4}{3}\right\}\)
c) Ta có: \(x\left(x+3\right)^3-\dfrac{x}{4}\cdot\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot\left[x\left(x+3\right)^2-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x^2+6x+9\right)-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\dfrac{1}{4}x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot x\cdot\left(x^2+6x+\dfrac{35}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x^2+6x+9-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left[\left(x+3\right)^2-\dfrac{1}{4}\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+3-\dfrac{1}{2}\right)\left(x+3+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+\dfrac{5}{2}\right)\left(x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+\dfrac{5}{2}=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3;-\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
tìm x biết
\(\frac{\left(24-x\right)^2+\left(24-x\right)\left(x-25\right)+\left(x-25\right)^2}{\left(24-x\right)^2-\left(24-x\right)\left(x-25\right)+\left(x-25\right)^2}=\frac{19}{49}\)
Đặt \(a=24-x,b=x-25\)
Khi đó pt ban đầu trở thành :
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow30a^2+68ab+30b^2=0\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3a=-5b\\5a=-3b\end{cases}}\)
Đến đây bạn thay vào là dễ rồi nhé ! Chúc bạn học tốt !
BT3: Tìm x
\(a,\left(x+2\right)^2-9=0\)
\(b,x^2-2x+1=25\)
\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\)
\(a,\left(x+2\right)^2-9=0\\ \Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{1;-5\right\}\)
\(b,x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{6;-4\right\}\)
\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow25x^2+10x-25x^2=30-1-9\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=2\\ Vậy\dfrac{ }{ }S=\left\{2\right\}\)
\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1-x\left(x^2-4\right)=5\\ \Leftrightarrow x^3-1-x^3+4x=5\\ \Leftrightarrow x^3-x^3+4x=5+1\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\dfrac{ }{ }S=\left\{\dfrac{3}{2}\right\}\)
a: =>(x+2-3)(x+2+3)=0
=>(x-1)(x+5)=0
=>x=1 hoặc x=-5
b: =>(x-1)^2=25
=>x-1=5 hoặc x-1=-5
=>x=-4 hoặc x=6
c: =>25x^2+10x+1-25x^2+9=30
=>10x+10=30
=>x+1=3
=>x=2
d: =>x^3-1-x(x^2-4)=5
=>x^3-1-x^3+4x=5
=>4x=6
=>x=3/2
Tìm x \(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
\(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
=>\(x^3-6x^2+12x-8-\left(x^3+125\right)+6x^2=11\)
=>\(x^3+12x-8-x^3-125=11\)
=>12x-133=11
=>12x=144
=>\(x=\dfrac{144}{12}=12\)
Tìm x :
\(\left(x-4\right)^3-\left(x-5\right)\cdot\left(x^2+5x+25\right)=\left(x+2\right)\cdot\left(x^2-2x+4\right)-\left(x+4\right)^3\)
\(\left(x-4\right)^3-\left(x-5\right)\left(x^2+5x+25\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+4\right)^3\)
\(\Leftrightarrow x^3-12x^2+48x-64-x^3+125=x^3+8-x^3-12x^2-48x+64\)
\(\Leftrightarrow-12x^2+48x+61=-12x^2-48x+72\)
\(\Leftrightarrow48x+61=-48x-72\)
\(\Leftrightarrow x=\dfrac{-133}{96}\)
Tìm x:
1, \(\left(x-5\right)\cdot\left(x+5\right)-\left(x+3\right)^2=2x-3\)
2,\(\left(2x+3\right)^2+\left(x-1\right)\cdot\left(x+1\right)=5\cdot\left(x+2\right)^2\)
3, \(\left(x-4\right)^3-\left(x-5\right)\cdot\left(x^2+5x+25\right)=\left(x+2\right)\cdot\left(x^2-2x+4\right)-\left(x+4\right)^3\)
1.\(\left(x-5\right).\left(x+5\right)-\left(x+3\right)^2=2x-3\)
\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9-2x+3=0\)
\(\Leftrightarrow-8x-31=0\)
\(\Leftrightarrow x=\dfrac{-31}{8}\)
\(\left(x-4\right)^3-\left(x-5\right)\left(x^2+5x+25\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-\left(x^3-5^3\right)=\left(x^3+2^3\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-x^3+5^3=x^3+2^3-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x^3-12x^2+48x-64\right)-x^3+5^3=x^3+2^3-\left(x^3+12x^2+48x+64\right)\)
\(\Leftrightarrow x^3-12x^2+48x-64-x^3+5^3=x^3+2^3-x^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-64+5^3=2^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-61=-12x^2-48x-56\)
\(\Leftrightarrow96x=-117\)
\(\Leftrightarrow x=\dfrac{-117}{96}=\dfrac{-39}{32}\)
2. \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+12x+9+x^2-1=5\left(x^2+4x+4\right)\)
\(\Leftrightarrow4x^2+12x+9+x^2-1=5x^2+20x+20\)
\(\Leftrightarrow4x^2+x^2-5x^2+12x-20x=20-9+1\)
\(\Leftrightarrow-8x=12\)
\(\Leftrightarrow x=\dfrac{-12}{8}=\dfrac{-3}{2}\)