Cho tam giác ABC đều cạnh 5 cm. Trên tia đối của tia BC lấy điểm D sao cho góc ADB=\(40^o\) .Tính:
a) Độ dài đoạn AD.
b) Độ dài đoạn DB.
Cho tam giác ABC đều cạnh 5cm. Trên tia đối của tia BC lấy điểm D sao cho \(\widehat{ADB}=40^o\). Tính:
a) Độ dài đoạn AD.
b) Độ dài đoạn DB.
Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ABD}+60^0=180^0\)
hay \(\widehat{ABD}=120^0\)
\(\Leftrightarrow\widehat{DAB}=180^0-120^0-40^0=20^0\)
Xét ΔABD có
\(\dfrac{AB}{\sin40^0}=\dfrac{AD}{\sin120^0}=\dfrac{BD}{\sin20^0}\)
\(\Leftrightarrow\left\{{}\begin{matrix}AD\simeq6,74\left(cm\right)\\BD\simeq2,66\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC đều có cạnh bằng 3cm. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CA lấy điểm D sao cho BE=CD=BC
a) Chứng minh AE=BD
b) Chứng minh tam giác AED vuông
c) Tính độ dài đoạn AE, DE
d) Tia phân giác của góc BCD cắt BD ở M. Chứng Minh CM// AB
e) Tính độ dài đoạn CM
Cho tam giác ABC đều có cạnh bằng 3cm. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CA lấy điểm D sao cho BE=CD=BC
a) Chứng minh AE=BD
b) Chứng minh tam giác AED vuông
c) Tính độ dài đoạn AE, DE
d) Tia phân giác của góc BCD cắt BD ở M. Chứng Minh CM// AB
e) Tính độ dài đoạn CM
a) Hai tam giác ACE và BAD có:
\(\hept{\begin{cases}AC=BA\\\widehat{ACE}=\widehat{BAD}=60^o\\CE=AD=2BC\end{cases}}\)
Nên \(\Delta ACE=\Delta BAD\)
Suy ra AE=BD
b) Tam giác ABC đều nên \(\widehat{ABC}=\widehat{BAC}=60^o\)
Suy ra \(\widehat{ABE}=180^o-\widehat{ABC}=180^o-60^o=120^o\)
Lại có BE=BC=BA nên tam giác ABE cân tại B. Do đó,
\(\widehat{EAB}=\frac{180^o-\widehat{ABE}}{2}=30^o\)
Do đó: \(\widehat{EAD}=\widehat{EAB}+\widehat{BAD}=30^o+60^o=90^o\)
Vậy tam giác EAD vuông tại A.
c) Tam giác ACE vuông tại A có:
\(\hept{\begin{cases}AC=3cm\\CE=2BC=6cm\end{cases}}\)
nên: \(AE=\sqrt{CE^2-AC^2}=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
Tam giác EAD vuông tại A có:
\(\hept{\begin{cases}AE=3\sqrt{3}\left(cm\right)\\AD=2BC=6\left(cm\right)\end{cases}}\)
Nên: \(DE=\sqrt{AE^2+AD^2}=\sqrt{27+36}=3\sqrt{7}\left(cm\right)\)
d) Tam giác BCD cân tại C có CM là đường phân giác nên CM cũng là đường cao của tam giác BCD. Do đó, \(CM\perp BD\)
Lại có: \(\Delta ACE=\Delta BAD\)nên\(\Delta ABD=\Delta CAE=90^o\)
Suy ra \(AB\perp BD\)
Vậy CM//AB (cùng vuông góc với BD).
e) Tam giác ABC đều nên \(\widehat{ACB}=60^o\Rightarrow\widehat{BCD}=120^o\)
Mà CM là phân giác của \(\widehat{BCD}\)nên \(\widehat{BCM}=60^o\)
Tam giác BMC vuông tại M có\(\widehat{BCM}=60^o\)
Nên: \(CM=\frac{BC}{2}=\frac{3}{2}=1,5\left(cm\right)\)
Lê Anh Tú câu c tính chất đó là gì vậy bạn
Cho tam giác ABC đều có cạnh bằng 3cm. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CA lấy điểm D sao cho BE=CD=BC
a) Chứng minh AE=BD
b) Chứng minh tam giác AED vuông
c) Tính độ dài đoạn AE, DE
d) Tia phân giác của góc BCD cắt BD ở M. Chứng Minh CM// AB
e) Tính độ dài đoạn CM
Cần gấp, ai lm đúng mk tick cho
cho tam giác abc vuông tại a biết ab=6cm bc=10cm. a) tính độ dài cạnh AB.
b) gọi m là trung điểm của ab. trên tia đối của tia mc lấy điểm d sao cho dm = cm. tính độ dài đoạn thẳng db
c) kẻ ah vuông góc với bc, (h thuộc bc). chứng minh ah = bk
Sửa đề :
a, Tính độ dài cạnh AC
Áp dụng định lí Pytago trong \(\Delta ABC\perp A\)có :
\(AB^2+AC^2=BC^2\)
\(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(AC=\sqrt{64}=8\)
b, Xét \(\Delta AMC\)và \(\Delta BMD\)có :
\(MB=MA\left(gt\right)\)
\(\widehat{AMC}=\widehat{BMD}\)( 2 góc đối đỉnh )
\(MD=MC\left(gt\right)\)
= > \(\Delta AMC=\Delta DMB\)
= > DB = AC = 8 cm ( 2 cạnh tương ứng )
c, thiếu đề bài
ta có :
c. mình đâu có thấy điểm K nào đâu nhỉ
Cho tam giác đều ABC cạnh 5 cm, điểm D thuộc tia đối của BC sao cho góc ADB=40 độ. Tính AD, BD
Cho tam giác đều ABC có cạnh bằng 3 . Trên tia đối của tia BC lấy điểm E ,trên Tia đối của tia CA lấy điểm D sao cho BE=CD=BC
a) CMR : AE= BD
b) Cm tam giác AED là tam giác vuông ở A
c)tính độ dài các đoạn AE,DE
d) TỪ tia phân giác của góc BCD cắt BD ở M . chứng minh CM song song với AB
e) Tính độ dài đoạn CM
* vẽ hình và giải bài toán giúp mink nha
Cho tam giác ABC có BC = 6 cm , trên tia đối của tia BC lấy điểm M sao cho CM = 2 cm.
a) Tính độ dài BM
b) Biết góc BAM = 100 độ , góc CAM = 40 độ . Tính góc BAC
c) Tính độ dài BD , biết D thuộc đoạn thẳng BM và CD = 1,5 cm
A ) TA CÓ : điểm C nằm giữa 2 điểm B và M
nên : BC + CM = BM
HAY : 6 + 2 = 8 ( cm )
=> BM = 8 cm
b ) ta có : góc BAC + góc CAM = góc BAM
hay : góc BAC + 40o = 1000
góc BAC = 1000 - 400
=> góc BAC = 600
C )
Cho tam giác ABC vuông tại A. Biết AC = 6cm ; BC = 10cm.
a) Tính độ dài cạnh AB.
b) Gọi M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho DM = CM. Chứng minh Tính độ dài đoạn thẳng DB.
c) Kẻ . Chứng minh AH = BK
HELP GIÚP MÌNH
a)
Áp dụng định lý Py-ta-go vào ΔABC vuông tại A, ta có:
\(AB^2+AC^2=BC^2\)
⇔ \(AB^2+6^2=10^2\)
⇒ \(AB^2=64\)
⇔ \(AB=8\) \(\left(cm\right)\)
b)
Xét ΔBDM và ΔACM có:
DM = CM (gt)
BM = AM (M là trung điểm của AB)
\(\widehat{BMD}=\widehat{AMC}\) (đối đỉnh)
⇒ \(\Delta BDM=\Delta ACM\) (c.g.c)
⇒ BD = AC (2 cạnh tương ứng)
⇔ BD = 6 (cm)