Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Trâm
Xem chi tiết
Minh Nhân
13 tháng 7 2021 lúc 20:16

Áp dụng HTL trong tam giác vuông ABC : 

\(AH^2=BH\cdot CH\)

\(\Rightarrow CH=\dfrac{12^2}{9}=16\left(cm\right)\)

\(BC=BH+CH=9+16=25\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot12\cdot25=150\left(cm^2\right)\)

Nguyễn Huy Tú
13 tháng 7 2021 lúc 20:17

undefined

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 23:34

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{12^2}{9}=16\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot25}{2}=150\left(cm^2\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2017 lúc 10:03

Tính được  S A B C = 150 c m 2

Văn Thị Kim Thoa
Xem chi tiết
Lấp La Lấp Lánh
10 tháng 10 2021 lúc 18:47

Áp dụng HTL:

\(AH^2=BH.HC\)

\(\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)

\(\Rightarrow BC=BH+HC=16+9=25\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.12.25=150\left(cm^2\right)\)

Phùng Quế
Xem chi tiết
Nguyễn Thị Tuyết Trâm
Xem chi tiết
Tạ Châu
Xem chi tiết
Nguyễn Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 22:40

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=20(cm)

\(\widehat{B}\simeq37^0\)

\(\widehat{C}\simeq53^0\)

Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 22:43

Áp dụng HTL:

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\Rightarrow BC=BH+BC=25\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=15\left(cm\right)\\AC=\sqrt{CH\cdot BC}=20\left(cm\right)\end{matrix}\right.\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\approx53^0\Rightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)

Ý Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2021 lúc 20:01

Câu 1: 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{9^2}+\dfrac{1}{12^2}=\dfrac{1}{81}+\dfrac{1}{144}=\dfrac{25}{1296}\)

\(\Leftrightarrow AH^2=\dfrac{1296}{25}\)

hay \(AH=\dfrac{14}{5}=4.8cm\)

Vậy: AH=4,8cm

Câu 2: 

Ta có: BC=BH+CH(H nằm giữa B và C)

hay BC=5+6=11(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=5\cdot11=55\)

hay \(AB=\sqrt{55}cm\)

Vậy: \(AB=\sqrt{55}cm\)

Câu 4:

Không có hàm số nào không phải là hàm số bậc nhất

Lan Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 14:57

CH=AH^2/HB=16cm

BC=16+9=25cm

S ABC=1/2*AH*BC

=1/2*12*25=150cm2