Tính
\(\left(-19\right)+5\left(-8\right)+19+\left(-3\right).\left(-2\right)^3\)
Tính
\(\left(-19\right)+5+\left(-8\right)+19+\left(-3\right).\left(-2\right)^3\)
Cái vừa nẫy hơi sai đề mk đăng lại
Ta có: \(\left(-19\right)+5+\left(-8\right)+19+\left(-3\right)\cdot\left(-2\right)^3\)
\(=\left(-19+19\right)+\left(5-8\right)+\left(-3\right)\cdot\left(-8\right)\)
\(=-3+24=21\)
Tính
\(\frac{\left(1+17\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right)....\left(1+\frac{17}{19}\right)}{\left(1+19\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right)....\left(1+\frac{19}{17}\right)}\)\(\frac{\left(1+17\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right)...\left(1+\frac{17}{19}\right)}{\left(1+19\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right)...\left(1+\frac{19}{17}\right)}\)
\(=\frac{18.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}...\frac{36}{17}}=\frac{18.19.20...36}{1.2.3...19}:\frac{20.21.22...36}{1.2.3...17}\)
\(=\frac{18.19.20...36}{1.2.3...19}.\frac{1.2.3...17}{20.21.22....36}=\frac{1.2.3...17.18...36}{1.2.3...19.20...36}=1\)
Tính giá trị biểu thức: A=\(\frac{\left(1+17\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right)....\left(1+\frac{17}{19}\right)}{\left(1+19\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right)...\left(1+\frac{19}{17}\right).}\)
Tính \(A=\frac{\left(1+17\right)+\left(1+\frac{17}{2}\right)+\left(1+\frac{17}{3}\right).....\left(1+\frac{17}{19}\right)}{\left(1+19\right)\left(1+\frac{19}{2}\right)\left(1+\frac{19}{3}\right)....\left(1+\frac{19}{17}\right)}\)
Tính:
\(M=\frac{\left(1+17\right)\left(1+\frac{17}{2}\right)\left(1+\frac{17}{3}\right)........\left(1+\frac{17}{19}\right)}{\left(1+19\right)\left(1+\frac{19}{2}\right)\left(1+\frac{19}{3}\right)........\left(1+\frac{19}{17}\right)}\)
\(M=\frac{18.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}...\frac{36}{17}}=\frac{\frac{18.19.20...36}{2.3...19}}{\frac{20.21.22...36}{2.3...17}}=\frac{\frac{18.19}{18.19}}{1}=\frac{1}{1}=1\)
Tính giá trị biểu thức: A=\(\frac{\left(1+17\right)\times\left(1+\frac{17}{2}\right)\times\left(1+\frac{17}{3}\right)....\left(1+\frac{17}{19}\right)}{\left(1+19\right)\times\left(1+\frac{19}{2}\right)\times\left(1+\frac{19}{3}\right)....\left(1+\frac{19}{17}\right)}\)
Tính:
\(A=\frac{\left(1+17\right)\left(1+\frac{17}{2}\right)\left(1+\frac{17}{3}\right)...\left(1+\frac{17}{19}\right)}{\left(1+19\right)\left(1+\frac{19}{2}\right)\left(1+\frac{19}{3}\right)...\left(1+\frac{19}{17}\right)}\)
bài 2: 1, \(\left(\dfrac{5}{6}\right)^{10}.\left(\dfrac{3}{10}\right)^{10}\)2,\(\left(\dfrac{4}{7}\right)^{19}:\left(\dfrac{-12}{35}\right)^{19}\) 3,\(\left(\dfrac{-3}{7}\right)^7:\left(\dfrac{-3}{5}\right)\)
Lời giải:
1.
$(\frac{5}{6})^{10}.(\frac{3}{10})^{10}=(\frac{5}{6}.\frac{3}{10})^{10}=(\frac{1}{4})^{10}$
$=\frac{1}{4^{10}}$
2.
$(\frac{4}{7})^{19}: (\frac{-12}{35})^{19}=(\frac{4}{7}: \frac{-12}{35})^{19}=(\frac{-5}{3})^{19}$
3.
$(\frac{-3}{7})^7:\frac{-3}{5}=\frac{(-3)^7}{7^7}.\frac{5}{-3}=\frac{5.(-3)^6}{7^7}=\frac{5.3^6}{7^7}$
1) \(\left(\dfrac{5}{6}\right)^{10}\cdot\left(\dfrac{3}{10}\right)^{10}\)
\(=\left(\dfrac{5}{6}\cdot\dfrac{3}{10}\right)^{10}\)
\(=\left(\dfrac{1}{4}\right)^{10}\)
2) \(\left(\dfrac{4}{9}\right)^{19}:\left(\dfrac{-12}{35}\right)^{19}\)
\(=\left(\dfrac{4}{9}:\dfrac{-12}{35}\right)^{19}\)
\(=\left(\dfrac{4}{9}\cdot\dfrac{35}{-12}\right)^{19}\)
\(=\left(-\dfrac{35}{27}\right)^{19}\)
3) \(\left(\dfrac{-3}{7}\right)^7:\left(\dfrac{-3}{5}\right)^7\)
\(=\left(\dfrac{-3}{7}:\dfrac{-3}{5}\right)^7\)
\(=\left(\dfrac{-3}{7}\cdot\dfrac{5}{-3}\right)^7\)
\(=\left(\dfrac{5}{7}\right)^7\)
1.Tính
\(A=\frac{\left(1+17\right)\left(1+\frac{17}{2}\right)\left(1+\frac{17}{3}\right)+...+\left(1+\frac{17}{19}\right)}{\left(1+19\right)\left(1+\frac{19}{2}\right)\left(1+\frac{19}{3}\right)+...+\left(1+\frac{19}{17}\right)}\)
Thánh nào giúp mk với
cho công thức tổng quát nè (do tui tự nghĩ ra đó :))
\(\left(a+b\right)\left(\frac{1}{?}\right)=\frac{a+b}{?}\) dựa vô đây nhân (1+17) và (1+19) và từng cái ngoặc kia là đc
\(A=\frac{\frac{1+17}{1}\cdot\frac{2+17}{2}\cdot\frac{3+17}{3}\cdot...\cdot\frac{19+17}{19}}{\frac{1+19}{1}\cdot\frac{2+19}{2}\cdot\frac{3+19}{3}\cdot...\cdot\frac{17+19}{17}}=\frac{18\cdot19\cdot20\cdot...\cdot36}{1\cdot2\cdot3\cdot...\cdot19}:\frac{20\cdot21\cdot22\cdot...\cdot36}{1\cdot2\cdot3\cdot...\cdot17}\)
\(=\frac{18\cdot19}{18\cdot19}=1\)