Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Quang Trường
Xem chi tiết
mùa đông Cô nàng
Xem chi tiết
NNMD
Xem chi tiết
Nguyen Cao Diem Quynh
Xem chi tiết
Diem Quynh
Xem chi tiết
alibaba nguyễn
24 tháng 4 2017 lúc 15:14

Ta có: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-abc+\left(ab+bc+ca\right)-\left(a+b+c\right)\ge0\)

\(\Leftrightarrow a+b+c-\left(ab+bc+ca\right)\le1-abc\le1\)

Mà \(\hept{\begin{cases}b\ge b^2\\c\ge c^3\end{cases}}\)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-\left(ab+bc+ca\right)\le1-abc\le1\)

Yeu toan
Xem chi tiết
Akai Haruma
28 tháng 6 2021 lúc 22:47

Lời giải:

a.

Vì $\widehat{BAH}=\widehat{CAM}$ nên $\widehat{BAM]=\widehat{CAH}$

Ta có:

\(\frac{HB}{HC}=\frac{S_{BAH}}{S_{CAH}}=\frac{BA.AH.\sin \widehat{BAH}}{CA.AH.\sin \widehat{CAH}}=\frac{AB}{AC}.\frac{\sin \widehat{CAM}}{\sin \widehat{BAM}}(1)\)

\(1=\frac{BM}{CM}=\frac{S_{BAM}}{S_{CAM}}=\frac{AB.AM\sin \widehat{BAM}}{AC.AM.\sin \widehat{CAM}}=\frac{AB.\sin \widehat{BAM}}{AC\sin \widehat{CAM}}\)

\(\Rightarrow \frac{\sin \widehat{CAM}}{\sin \widehat{BAM}}=\frac{AB}{AC}(2)\)

Từ $(1);(2)\Rightarrow \frac{HB}{HC}=\frac{AB^2}{AC^2}$

b.

Đặt $AB=c; BC=a; CA=b$ thì theo phần a ta có:

$\frac{BH}{CH}=\frac{c^2}{b^2}\Rightarrow \frac{BH}{a}=\frac{c^2}{b^2+c^2}$

$\Rightarrow BH=\frac{ac^2}{b^2+c^2}$
$CH=\frac{ab^2}{b^2+c^2}$
Theo định lý Pitago:

$c^2-BH^2=b^2-CH^2$

$\Leftrightarrow c^2-\frac{a^2c^4}{(b^2+c^2)^2}=b^2-\frac{a^2b^4}{(b^2+c^2)^2}$

$\Leftrightarrow (b^2-c^2)=\frac{a^2(b^4-c^4)}{(b^2+c^2)^2}$

$\Leftrightarrow b^2-c^2=\frac{a^2(b^2-c^2)}{b^2+c^2}$

$\Leftrightarrow (b^2-c^2)(b^2+c^2)=a^2(b^2-c^2)$

$\Rightarrow b^2-c^2=0$ hoặc $b^2+c^2=a^2$ 

$\Leftrightarrow AB=AC$ hoặc tam giác $ABC$ vuông tại $A$.

Akai Haruma
28 tháng 6 2021 lúc 22:47

Hình vẽ:

Trần Quang Huy
Xem chi tiết
Uchiha Sasuke
Xem chi tiết
Loan Trinh
Xem chi tiết