ta có : ab+ac+bc= 2a+2b+2c
=2*(a+b+c)> a+b+c
=> ab+ac+bc>a+b+c
ta có : ab+ac+bc= 2a+2b+2c
=2*(a+b+c)> a+b+c
=> ab+ac+bc>a+b+c
Cho các số a,b,c thuộc[0;1].CMR:
a+b^2+c^3-ab-bc-ac<hoặc=1.
cho tam giác ABC, AH⊥BC (H nằm Giữa B và C). M là trung điểm BC. Biết
∠BAH=∠CAM.
a) CMR: \(\dfrac{HB}{HC}=\dfrac{AB^2}{AC^2}\)
b) CMR: AB=AC hoặc ∠BAC=90 độ
Ai giải giúp em với ạ. Em gấp lắm rùi
CMR
a^2+b^2+c^2-ab-ac-bc lớn hơn hoặc bằng 0
CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ac} + \frac{1}{3} \geq \frac{8}{9}(\frac{a}{b+c} + \frac{b}{a+c} +\frac{c}{a+b})\)
CMR:\((1+a+b+c)(1+ab+bc+ac) \geq 4\sqrt{2(a+bc)(b+ac)(c+ab)}\)
Cho a,b,c>0 thỏa\(ab+ac+bc=0\)
CMR\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}>hoặc=\frac{3}{4}\)
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2
Cho a,b,c>0;a+b+c=3
CMR:(a^2+bc)/(b^2+ac)+(b+ac)/(c+ab)+(c^2+ac)/(a+ab)>=3
Cho a,b,c là các số dương thỏa a+b+c=1.CMR:
\(\frac{bc}{a+bc}+\frac{ac}{b+ac}+\frac{ab}{c+ab}\ge\frac{3}{4}\)