Mn giải giúp mình vs ạ. Mình cảm ơn nhiều
Mn giải giúp mình vs ạ. Mình cảm ơn nhiều
- Xét : \(x^2+8x-20\le0\)
\(\Rightarrow-10\le x\le2\)
Mà \(x>0\)
\(\Rightarrow0< x\le2\)
- Xét \(x^2-2\left(m+3\right)x+m^2-2m< 0\)
Có : \(\Delta^,=b^{,2}-ac=\left(m+3\right)^2-\left(m^2-2m\right)\)
\(=m^2+6m+9-m^2+2m=8m+9\)
- Để bất phương trình có nghiệm
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow m>-\dfrac{9}{8}\)
=> Bất phương trình có nghiệm \(S=\left(x_1;x_2\right)\)
Mà \(0< x\le2\)
\(\Rightarrow0< x_1< x_2\le2\)
\(TH1:x=2\)
\(\Rightarrow4-4\left(m+3\right)+m^2-2m< 0\)
\(\Rightarrow3-\sqrt{17}< m< 3+\sqrt{17}\)
\(TH2:0< x_1< x_2< 2\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-2m>0\\m^2-6m-8>0\\0< 2\left(m+3\right)< 2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\\\left[{}\begin{matrix}m>3+\sqrt{17}\\m< 3-\sqrt{17}\end{matrix}\right.\\-3< m< -2\end{matrix}\right.\)
Vậy \(3-\sqrt{7}< m< 3+\sqrt{7}\)
Từ pt đầu \(\Rightarrow-10\le x\le2\) (1)
Để BPT chứa m có nghiệm thì \(\Delta'>0\Rightarrow m...\) (2)
Gọi 2 nghiệm của pt chứa m là \(x_1;x_2\Rightarrow\) miền nghiệm của BPT dưới là \(D=\left(x_1;x_2\right)\)
Do (1) chỉ chứa 2 số nguyên dương là 1 và 2, nên để hệ có nghiệm nguyên dương thì D cần chứa ít nhất 1 trong 2 giá trị 1 hoặc 2
\(\Leftrightarrow\left[{}\begin{matrix}x_1< 1< x_2\\x_1< 2< x_2\end{matrix}\right.\) (các trường hợp trùng lặp 2 điều kiện ví dụ \(x_1< 1< 2< x_2\) không thành vấn đề vì cuối cùng ta cũng hợp nghiệm)
\(\Leftrightarrow\left[{}\begin{matrix}f\left(1\right)< 0\\f\left(2\right)< 0\end{matrix}\right.\) (3) với \(f\left(x\right)=x^2-2\left(m+3\right)x+m^2-2m\)
Lấy giao nghiệm của (2) và (3) sẽ được khoảng m cần tìm
Mn giải giúp mik vs ạ 🥺 mình đang cần gấp. Cảm ơn mn nhiều
Mn giải giúp mình câu 2 vs ạ. Mìn cảm ơn nhiều
Đk:\(y^2-2x-5y+6\ge0\)
Pt (1)\(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-y\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)
TH1: Thay x=1 vào pt (2) ta đc: \(3\sqrt{y^2-5y+4}=y+9\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+9\ge0\\9\left(x^2-5y+4\right)=y^2+18y+81\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y\ge-9\\8y^2-63y-45=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{63+3\sqrt{601}}{16}\\y=\dfrac{63-3\sqrt{601}}{16}\end{matrix}\right.\) (tm)
TH2: Thay y=x+2 vào pt (2) ta đc:
\(\left(x-1\right)^2+3\sqrt{\left(x+2\right)^2-2x-5\left(x+2\right)+6}=x+2+9\)
\(\Leftrightarrow x^2-3x-10+3\sqrt{x^2-3x}=0\)
Đặt \(t=\sqrt{x^2-3x}\left(t\ge0\right)\)
Pttt: \(t^2-10+3t=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow2=\sqrt{x^2-3x}\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=6\\y=1\end{matrix}\right.\) (tm)
Vậy \(\left(x;y\right)=\text{}\left\{\left(1;\dfrac{63+3\sqrt{601}}{16}\right);\left(1;\dfrac{63-3\sqrt{601}}{16}\right),\left(4;6\right),\left(-1;1\right)\right\}\)
Xét pt đầu:
\(\left(x^2+x-2\right)-y\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-y\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)
- Với \(x=1\) thay xuống pt dưới:
\(3\sqrt{y^2-5y+4}=y+9\) \(\left(y\ge-9\right)\)
\(\Leftrightarrow9\left(y^2-5y+4\right)=y^2+18y+81\)
\(\Leftrightarrow8y^2-63y-45=0\)
\(\Rightarrow y=\dfrac{63\pm3\sqrt{601}}{16}\) (thỏa mãn)
- Với \(y=x+2\) thay xuống pt dưới:
\(\left(x-1\right)^2+3\sqrt{x^2-3x}=x+11\) (ĐKXĐ: ....)
\(\Leftrightarrow x^2-3x+3\sqrt{x^2-3x}-10=0\)
Đặt \(\sqrt{x^2-3x}=t\ge0\)
\(\Rightarrow t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-3x}=2\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow...\)
Mọi người giải giúp mình vs ạ. Chiều nay mình phải nộp r 🥺Cảm ơn mn nhiều
Tam giác ABC vuông tại A có AM là trung tuyến ứng với cạnh huyền
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow BC=2AM=50\left(m\right)\)
a. Áp dụng định lý Pitago:
\(AB=\sqrt{BC^2-AC^2}=30\left(m\right)\)
b. Kẻ \(MH\perp AC\Rightarrow MH||AB\) (cùng vuông góc AC)
Mà M là trung điểm BC \(\Rightarrow MH\) là đường trung bình tam giác ABC
\(\Rightarrow MH=\dfrac{1}{2}AB=15\left(m\right)\)
\(\Rightarrow S_{AMC}=\dfrac{1}{2}MH.AC=\dfrac{1}{2}.15.40=300\left(m^2\right)\)
Sự lãnh đạo của LÝ CÔNG UẨN . Mn giải giúp mình vs ạ . Cảm ơn mn nhiều ^^
Mn giải giúp mình c4 vs ạ. Mình cảm ơn nhiều
Gọi O là trung điểm IK \(\Rightarrow OI=OK=\dfrac{1}{2}IK\)
\(\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)+\left(\overrightarrow{MK}+\overrightarrow{KC}\right)\left(\overrightarrow{MK}+\overrightarrow{KD}\right)=\dfrac{1}{2}Ik^2\)
\(\Leftrightarrow MI^2-IA^2+MK^2-KC^2=\dfrac{1}{2}IK^2\)
\(\Leftrightarrow\left(\overrightarrow{MO}+\overrightarrow{OI}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OK}\right)^2=IA^2+KC^2+\dfrac{1}{2}IK^2\)
\(\Leftrightarrow2MO^2+2OI^2=IA^2+KC^2+\dfrac{1}{2}IK^2\)
\(\Leftrightarrow2MO^2+\dfrac{1}{2}IK^2=IA^2+KC^2+\dfrac{1}{2}IK^2\)
\(\Leftrightarrow MO^2=\dfrac{1}{2}\left(IA^2+KC^2\right)=\dfrac{1}{8}\left(AB^2+CD^2\right)\)
\(\Leftrightarrow MO=\dfrac{1}{2\sqrt{2}}\sqrt{AB^2+CD^2}\)
Tập hợp M là đường tròn tâm O bán kính \(\dfrac{\sqrt{AB^2+CD^2}}{2\sqrt{2}}\)
Chỉ mik bài 7 vs bài 8 vs ạ,mong mọi người giúp mình giải,thật sự cảm ơn mn rất nhiều
em ơi chưa có bài em nhé, em chưa tải bài lên lám sao mình giúp được
mn giúp mình bài 3 vs ạ. Mình cảm ơn nhiều
Xét pt hoành độ gđ của đường thẳng và parabol có:
\(\left(m-1\right)x^2+3mx+2m=2x-1\)
\(\Leftrightarrow\left(m-1\right)x^2+x\left(3m-2\right)+2m+1=0\) (1)
Để đt và parabol cắt tại hai điểm pb có hoành độ âm
\(\Leftrightarrow\) Pt (1) có hai nghiệm âm phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m+8>0\\\dfrac{2-3m}{m-1}< 0\\\dfrac{2m+1}{m-1}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;4-2\sqrt{2}\right)\cup\left(4+2\sqrt{2};+\infty\right)\\m\in\left(-\infty;\dfrac{2}{3}\right)\cup\left(1;+\infty\right)\\m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(1;+\infty\right)\end{matrix}\right.\)
\(\Rightarrow m\in\left(-\infty;-\dfrac{1}{2}\right)\cup\left(4+2\sqrt{2};+\infty\right)\)
Vậy...
Mn giải giúp mình câu 1 vs ạ. Mình cảm ơn nhiều