thực hiện phép tính
(x+1)^2 + (x-2) (x+3) - 4x
(x-2)^2 + (x+1)^2 + 2 (x-2) (-1 - x)
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
Thực hiện phép tính (x^3+4x^2+x-2):(x+1)
Thực hiện phép tính
[ x^2-2x+1/3x+(x+1)^2 - 1-2x^2+4x/x^3-1 + 1/x-1] : 2x/x^3+x
éc o éccccccccccccccccc
Bạn cần viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo). Viết như thế này nhìn khó đọc quá.
Thực hiện phép tính
\(\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{2-4x}{x+1}.\dfrac{3x}{x^2-3x-1}\)
Ta có: \(\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{2-4x}{x+1}\cdot\dfrac{3x}{x^2-3x-1}\)
\(=\left(\dfrac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\dfrac{6x}{3x\left(x+1\right)}-\dfrac{9x\left(x+1\right)}{3x\left(x+1\right)}\right):\dfrac{2-4x}{x+1}\cdot\dfrac{3x}{x^2-3x-1}\)
\(=\dfrac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\dfrac{x+1}{2-4x}\cdot\dfrac{3x}{x^2-3x-1}\)
\(=\dfrac{-8x^2+2}{3x\left(x+1\right)}\cdot\dfrac{x+1}{2-4x}\cdot\dfrac{3x}{x^2-3x-1}\)
\(=\dfrac{-2\left(4x^2-1\right)}{3x\cdot2\cdot\left(1-2x\right)}\cdot\dfrac{3x}{x^2-3x-1}\)
\(=\dfrac{2\left(1-2x\right)\left(2x+3\right)}{6x\left(1-2x\right)}\cdot\dfrac{3x}{x^2-3x-1}\)
\(=\dfrac{2x+3}{x^2-3x-1}\)
Thực hiện phép tính sau: a) 6/(x^2+4x)+3/(2x+8) b) (x+1)/(x-2)+(x-2)/(x+2)+(x-14)/(x^2-4)
\(\dfrac{6}{x^2+4x}+\dfrac{3}{2x+8}\\ =\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\\ =\dfrac{6.2}{2x\left(x+4\right)}+\dfrac{3x}{2x\left(x+4\right)}\\ =\dfrac{12+3x}{2x\left(x+4\right)}\\ =\dfrac{3\left(4+x\right)}{2x\left(x+4\right)}\\ =\dfrac{3}{2x}\)
________
\(\dfrac{x+1}{x-2}+\dfrac{x-2}{x+2}+\dfrac{x-14}{x^2-4}\\ \left(\text{đ}k\text{x}\text{đ}:x\ne\pm2\right)\\ =\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\dfrac{x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2+2x+x+2+x^2-4x+4+x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{2x^2-8}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{2\left(x^2-4\right)}{x^2-4}\\ =2\)
a: \(=\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\)
\(=\dfrac{12+3x}{2x\left(x+4\right)}=\dfrac{3\left(x+4\right)}{2x\left(x+4\right)}=\dfrac{3}{2x}\)
b: \(=\dfrac{\left(x+1\right)\left(x+2\right)+\left(x-2\right)^2+x-14}{x^2-4}\)
\(=\dfrac{x^2+3x+2+x^2-4x+4+x-14}{x^2-4}=\dfrac{2x^2-8}{x^2-4}=2\)
a. \(\dfrac{6}{x^2+4x}+\dfrac{3}{2x+8}\\ =\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\\ =\dfrac{12}{2x\left(x+4\right)}+\dfrac{3x}{2x\left(x+4\right)}\\ =\dfrac{12+3x}{2x\left(x+4\right)}=\dfrac{3\left(x+4\right)}{2x\left(x+4\right)}=\dfrac{3}{2x}\)
b. \(\dfrac{x+1}{x-2}+\dfrac{x-2}{x+2}+\dfrac{x-14}{x^2-4}\left(đk:x\ne\pm2\right)\\ =\dfrac{x+1}{x-2}+\dfrac{x-2}{x+2}+\dfrac{x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2+2x+x+2+x^2-2x-2x+4+x-14}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{2x^2-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}=2\)
thực hiện các phép tính sau:
a) x(x^2+4x+5)-x^2(x+4)
b) (x-2)^2+(3-x)(x-1)
c) (x+2)^3-x(x^2+6x+12)
a) \(x\left(x^2+4x+5\right)-x^2\left(x+4\right)\)
\(=x^3+4x^2+5x-x^3-4x^2\)
\(=5x\)
b) \(\left(x-2\right)^2+\left(3-x\right)\left(x-1\right)\)
\(=x^2-4x+4+3x-3-x^2+x\)
\(=1\)
c) \(\left(x+2\right)^3-x\left(x^2+6x+12\right)\)
\(=x^3+6x^2+12x+8-x^3-6x^2-12x\)
\(=8\)
Thực hiện các phép tính sau:
a) 6 /x²+4x + 3/2x+8
b) x+1/ 2x-2 + x-1/ 2x+2 + x²/ 1-x²
c) 1/x² +xy + 2/y²-x² + 1/xy-x²
a: \(\dfrac{6}{x^2+4x}+\dfrac{3}{2x+8}\)
\(=\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\)
\(=\dfrac{12+3x}{2x\left(x+4\right)}=\dfrac{3\left(x+4\right)}{2x\left(x+4\right)}=\dfrac{3}{2x}\)
b: \(\dfrac{x+1}{2x-2}+\dfrac{x-1}{2x+2}+\dfrac{x^2}{1-x^2}\)
\(=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{x-1}{2\left(x+1\right)}-\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2+\left(x-1\right)^2-2x^2}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2x+1+x^2-2x+1-2x^2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x^2-1}\)
c: \(\dfrac{1}{x^2+xy}+\dfrac{2}{y^2-x^2}+\dfrac{1}{xy-x^2}\)
\(=\dfrac{1}{x\left(x+y\right)}-\dfrac{2}{\left(x-y\right)\left(x+y\right)}-\dfrac{1}{x\left(x-y\right)}\)
\(=\dfrac{x-y-2x-x-y}{x\left(x-y\right)\left(x+y\right)}=\dfrac{-2x-2y}{x\left(x-y\right)\left(x+y\right)}\)
\(=-\dfrac{2}{x\left(x-y\right)}\)
- Bài 12: Thực hiện phép tính
1) x(1 - x) + (x - 1) ^ 2 3) (x + 2) ^ 2 - (x - 3)(x + 1)
5) (x - 2) ^ 2 + (x - 1)(x + 5)
7) (1 - 2x)(5 - 3x) + (4 - x) ^ 2
9) (x + 1) ^ 2 + (x - 2)(x + 2) - 4x
11) (x + 4) ^ 2 + (x + 5)(x - 5) - 2x(x + 1)
13) (x - 1) ^ 2 - 2(x + 3)(x - 3) + 4x(x - 4)
2) (x - 3) ^ 2 - x ^ 2 + 10x - 7
4) (x + 4)(x - 2) - (x - 3) ^ 2
6) (x + 3)(x - 3) - x(23 + x)
8) (x - 2)(x + 2) - (x - 3)(x + 1)
10) (x + 2) ^ 2 - (x + 3)(x - 3) + 10
12) (x - 1) ^ 2 - (x - 4)(x + 4) + (x + 3) ^ 2
14) (y - 3)(y + 3)(y ^ 2 + 9) -(y^ 2 +2)(y