tìm giá trị lớn nhất của đa thức: C=5-8x-x^2
Tìm giá trị lớn nhất của đa thức :
a , C = 5 - 8x - x2
b , D = -3x ( x + 3 ) - 7
a) C= -(x2+8x-5)= -(x2+2.x.4+42-42-5)=-(x+4)2+21
vậy GTLN của C= 21 khi x=-4
a)= -(x2 +8x - 5) =-(x2 + 2.x.4+ 42 -42+5)= - (x+4)2-11=11+(x+4)2
vì (x+4)2 >0 nên 11+(x+4)2 >0
Max= 11 suy ra x+4=0 suy ra x=-4
b) hk bk lm
Tìm giá trị lớn nhất của đa thức : A=8x - 2x^2 - 5
Ơ tưởng là GTNN chứ nhỉ :D
Từ đa thức, ta suy ra:
\(A=-2\cdot\left(-4x+x^2\right)-5\)
\(A=-2\left(x^2-4x+4\right)+8-5\)
\(A=-2\cdot\left(x-2\right)^2-3\)
\(\)Vì 2(x-2)2\(\le\)0 \(\forall x\)nên minA=-3
Vậy...
\(A=-2x^2+8x-5=-2\left(x^2-4x+4\right)+8-5\)
\(=-2\left(x-2\right)^2+3\)
Có : \(-2\left(x-2\right)^2\le0\)
=> \(A=-2\left(x-2\right)^2+3\le0+3=3\)
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy max A = 3 tại x = 2.
Bạn sắp xếp biểu thức từ lớn xuống nhé, mình sẽ không viết lại đề
\(A=-2\left(x^2-4x+4\right)+8-5=-2\left(x-2\right)^2-3\)
Ta có: \(-2\left(x-2\right)^2\le0\)
\(\Rightarrow A=-2\left(x-2\right)^2+3\ge0+3=3\)
Dấu "=" xảy ra khi và chỉ khi x-2=0 => x=2
Vậy Amax = 3 khi x=2
Tìm giá trị nhỏ nhất của đa thức x2+2x+2, 4x2- 12x+ 11, x2+ x+1 .
Tìm giá trị lớn nhất của đa thức -x2 +4x-1, -x2+ 4x-4, -x2 +6x-15, -x2+8x+5
Bài 5: a) Tìm giá trị nhỏ nhất của biểu thức A= 5 - 8x + x2 b) Tìm giá trị lớn nhất của biểu thức 𝐵 = (2 – x)(x + 4)
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
với giá trị nào của x thì biểu thức : P=-x2-8x+5.Có giá trị lớn nhất. Tìm giá trị lớn nhất đó?
P = - x2 - 8x + 5
P = - ( x2 + 8x - 5 )
P = - ( x2 + 2 . 4 . x + 42 - 42 - 5 )
P = - [ ( x + 4 )2 - 21 ]
P = - ( x + 4 )2 + 21 \(\le\)21
Dấu " = " xảy ra \(\Leftrightarrow\)x + 4 = 0
\(\Rightarrow\)x = - 4
Vậy : Min P = 21 \(\Leftrightarrow\)x = - 4
Nhầm Max P = 21 \(\Leftrightarrow\)x = - 4 nhé . Thứ lỗi
P = -x2 - 8x + 5
P = -x2 - 8x - 16 + 21
P = -( x2 + 8x + 16 ) + 21
P = -( x + 4 )2 + 21
\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2+21\le21\)
Dấu " = " xảy ra <=> x + 4 = 0 => x = -4
Vậy PMax = 21, đạt được khi x = -4
tìm giá trị lớn nhất của Đa thức sau : \(-4x^2+8x-5\)
Ta có
\(-4x^2+8x-5=-4\left(x^2-2x+1\right)-1=-1-4\left(x-1\right)^2\)
Nhận thấy \(-4\left(x-1\right)^2\le0\forall x=>-1-4\left(x-1\right)^2\le-1\forall x\)
Dấu "=" xảy ra khi x-1=0=> x=1
Vậy GTLN của -4x2+8x-5 là -1 khi x=1
Tìm giá trị nhỏ nhất của biểu thức A,B,C và giá trị lớn nhất của biểu thức D,E:
A= x2-4x+1 D= 5-8x-x2
B= 4x2+4x+11 E= 4x-x2+1
C= (x-1).(x+3).(x+2).(x+6)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
A= x2 - 4x +1
= x2 - 4x + 4 - 3
= (x-2)2 -3
Ta có (x-2)2 ≥ 0 ∀ x
⇒ (x-2)2 -3 ≥ -3 ∀ x
Vậy AMin= -3 tại x=2
B= 4x2+4x+11
= 4x2+4x+1+10
= (2x+1)2+10
Ta có (2x+1)2 ≥ 0 ∀ x
⇒ (2x+1)2+10 ≥ 10 ∀ x
Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)
C=(x-1)(x+3)(x+2)(x+6)
= (x-1)(x+6)(x+3)(x+2)
= (x2+5x-6) (x2+5x+6)
= (x2+5x)2 -36
Ta có (x2+5x)2 ≥ 0 ∀ x
⇒ (x2+5x)2 -36 ≥ -36 ∀ x
Vậy CMin=-36 tại x=0 hoặc x= -5
Tìm giá trị nhỏ nhất của biểu thức A, B, C và giá trị lớn nhất của biểu thức D, E:
A = x2 – 4x + 1
B = 4x2 + 4x + 11
C = (x – 1)(x + 3)(x + 2)(x + 6)
D = 5 – 8x – x2
E = 4x – x2 +1
Tính giá trị nhỏ nhất:
\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$
Vậy $A_{\min}=-3$
Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$
Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$
$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$
$=(x^2+5x)^2-36\geq 0-36=-36$
Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Tìm giá trị lớn nhất:
$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$
Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$
Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$
$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$
Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$
tìm giá trị lớn nhất của biểu thức A= -x^2-8x 5
Ta có: x^2>=0 với mọi x =>-x^2<=0 với mọi x =>-x^2-8*5<=-40
Dấu bằng xảy ra khi x^2=0 =>x=0
bạn làm sai rồi mik ghi là tìm giá trị lớn nhất mà
Bé hơn bằng là tìm giá trị lớn nhất đó bạn