viết thành hằng đẳng thức
a) 4x2 - 4x +1
b) (3x +2)(2-3x)
c) (x-3)(x2 +3x +9)
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a/ $=(x-2)^2$
b/ $=(2x+1)^2$
c/ $=(4x-3y)(4x+3y)$
d/ $=(1-x)(x+7)$
e/ $=(-x+1)(5x-1)$
f/ $=(x-y)(x^2+xy+y^2)$
g/ $=(3+x)(9-3x+x^2)$
h/ $=(x+2)^3$
i/ $=(1-x)^3$
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
Viết theo hằng đẳng thức
a) x3- 3x2+ 3x –1
b) 1 - 4x2
c) (x2+ 2x + 4)(x - 2)
d) 27x3– 1
e) x3+ 8
g) x2- 4x + 4
h) (x - 2y)(x + 2y)
j) x2- 8x + 16
\(a,=\left(x-1\right)^3\\ b,=\left(1-2x\right)\left(1+2x\right)\\ c,=x^3-8\\ d,=\left(3x-1\right)\left(9x^2+3x+1\right)\\ e,=\left(x+2\right)\left(x^2-2x+4\right)\\ g,=\left(x-2\right)^2\\ h,=x^2-4y^2\\ j,=\left(x-4\right)^2\)
Phân tích đa thức thành nhân tử bằng kĩ thuật bổ sung hằng đẳng thức a)4x^2+5x-6 b)9x^2-6x-3 c)2x^2-3x-2 d)3x^2+x-2 e)3x^2+10x+3
a: =4x^2+8x-3x-6
=4x(x+2)-3(x+2)
=(x+2)(4x-3)
b: =3(3x^2-2x-1)
=3(3x^2-3x+x-1)
=3(x-1)(3x+1)
c: =2x^2-4x+x-2
=2x(x-2)+(x-2)
=(x-2)(2x+1)
d: =3x^2+3x-2x-2
=3x(x+1)-2(x+1)
=(x+1)(3x-2)
e: =3x^2+9x+x+3
=3x(x+3)+(x+3)
=(x+3)(3x+1)
a) \(4x^2+5x-6\)
\(=4x^2+8x-3x-6\)
\(=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(4x-3\right)\)
b) \(9x^2-6x-3\)
\(=3\left(3x^2-2x-1\right)\)
\(=3\left(3x^2-3x+x-1\right)\)
\(=3\left[3x\left(x-1\right)+\left(x-1\right)\right]\)
\(=3\left(x-1\right)\left(3x+1\right)\)
c) \(2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=\left(2x^2-4x\right)+\left(x-2\right)\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
d) \(3x^2+x-2\)
\(=3x^2+3x-2x-2\)
\(=\left(3x^2+3x\right)-\left(2x+2\right)\)
\(=3x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-2\right)\)
e) \(3x^2+10x+3\)
\(=3x^2+9x+x+3\)
\(=3x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(3x+1\right)\)
Bài 1 Rút gọn biểu thức
a, [(3x - 2)(x + 1) - (2x + 5)(x2 - 1)] : (x + 1)
b, (2x + 1)2 - 2(2x + 1)(3 - x) + (3 - x)2
c, (x - 1)2 - (x + 1) (x2 - x + 1) - (3x + 1)(1 - 3x)
d, (x2 + 1)(x - 3) - (x - 3)(x2 + 3x + 9)
e, (3x +2)2 + (3x - 2)2 - 2(3x + 2)(3x - 2) + x
Bài 2 Phân tích các đa thức sau thành nhân tử
1, 3(x + 4) - x2 - 4x
2, x2 - xy + x - y
3, 4x2 -25 + (2x + 7)(5 - 2x)
4, x2 + 4x - y2 + 4
5, x3 - x2 - x + 1
6, x3 + x2y - 4x - 4y
7, x3 - 3x2 + 1 - 3x
8, 2x2 + 3x - 5
9, x2 - 7xy + 10y2
10, x3 - 2x2 + x - xy2
viet thanh cac hằng đẳng thức
4x2 - 4x + 1
[3x+2][2-3x]
[x-3][x2+3x+9]
theo thứ tự nka
=(2x-1)^2
=2^2-(3x)^2=4-9x^2
=x^3-27
Viết các đa thức sau thành tích
1. ( 3x + 2)2 - 4
2. 4x2 - 25y2
3. 4x2- 49
4. 8z3 + 27
5. \(\dfrac{9}{25}\)x4 - \(\dfrac{1}{4}\)
6. x32 - 1
7. 4x2 + 4x + 1
8. x2 - 20x + 100
9. y4 -14y2 + 49
10. 125x3 - 64y3
1. ( 3x + 2)2 - 4
= (3x+2-2)(3x+2+2)
= 3x(3x+4)
2. 4x2 - 25y2
= (2x-5y)(2x+5y)
3. 4x2- 49
=(2x-7)(2x+7)
4. 8z3 + 27
=(2z+3)(4x2-6z+9)
5. \(\dfrac{9}{25}x^4-\dfrac{1}{4}\)
= \((\dfrac{3}{5}x^2-\dfrac{1}{2})(\dfrac{3}{5}x^2+\dfrac{1}{2})\)
6. x32 - 1
=(x16-1)(x16+1)
7. 4x2 + 4x + 1
=(2x+1)2
8. x2 - 20x + 100
=(x-10)2
9. y4 -14y2 + 49
=(y2-7)2
10. 125x3 - 64y3
= (5x-4y)(25x2+20xy+16y2)
1) \(\left(3x+2\right)^2-4=\left(3x+2+2\right)\left(3x+2-2\right)=3x\left(3x+4\right)\)
2) \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
3) \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)
4) \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
6) \(x^{32}-1=\left(x^{16}-1\right)\left(x^{16}+1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
7) \(4x^2+4x+1=\left(2x+1\right)^2\)
8) \(x^2-20x+100=\left(x-10\right)^2\)
9) \(y^4-14y^2+49=\left(y^2-7\right)^2\)
Phân tích đa thức thành nhân tử:
a)x2-9+2.(x+3)
b)x2-10x+25-3.(x-5)
c)x3-4x2+3x
a) \(x^2-9+2\left(x+3\right)=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x-3+2\right)=\left(x+3\right)\left(x-1\right)\)
b) \(x^2-10x+25-3\left(x-5\right)=\left(x-5\right)^2-3\left(x-5\right)=\left(x-5\right)\left(x-5-3\right)=\left(x-5\right)\left(x-8\right)\)
c) \(x^3-4x^2+3x=x\left(x^2-4x+3\right)=x\left(x-1\right)\left(x-3\right)\)
phân tích các đa thức thành nhân tử
a) ( x2 + 4)2- 16x2
b) ( x+3)2- 8x3
c) (4x2-3x -18)2- ( 4x2 + 3x)2
\(a,\left(x^2+4\right)^2-16x^2=\left(x^2+4\right)-\left(4x\right)^2=\left(x^2+4-4x\right).\left(x^2+4+4x\right)=\left(x-2\right)^2.\left(x+2\right)^2\)
\(b,\left(x+3\right)^3-8x^3=\left(x+3\right)^3-\left(2x\right)^3=\left(x+3-2x\right).\left[x^2+\left(x+3\right).2x+\left(2x\right)^2\right]=\left(3-x\right).\left(x^2+2x^2+6x+4x^2\right)\)
\(c,\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=\left(4x^2-3x-18-4x^2-3x\right).\left(4x^2-3x-18+4x^2+3x\right)=\left(-6x-18\right).\left(8x^2-18\right)\)