Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 15:00

1) Thay m=3 vào (1), ta được:

\(x-2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=9\)

tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 14:31

a) Thay m=-3 vào phương trình (1), ta được:

\(x-2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=9\)

tranthuylinh
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 7 2021 lúc 17:36

1.Thay m=-1 vào pt ta được:

\(x^4-2x^2-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vn\right)\\x^2=3\end{matrix}\right.\)\(\Rightarrow x=\pm\sqrt{3}\)

Vậy...

2.Đặt \(t=x^2\left(t\ge0\right)\)

Với mỗi t>0 thì sẽ luôn có hai x phân biệt

Pttt: \(t^2-2t+m-2=0\) (2)

Để pt (1) có 4 nghiệm pb \(\Leftrightarrow\) PT (2) có hai nghiệm pb dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=2>0\left(lđ\right)\\P=m-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m-2\right)>0\\m>2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)\(\Rightarrow2< m< 3\)

Vậy...

Nguyễn Việt Lâm
7 tháng 7 2021 lúc 17:36

1. Bạn tự giải

2. Đặt \(x^2=t\ge0\) pt trở thành:

\(t^2-2t+m-2=0\) (2)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(m-2\right)>0\\t_1+t_2=2>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)

\(\Rightarrow2< m< 3\)

tranthuylinh
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 7 2021 lúc 17:54

1. Bạn tự giải

2. Phương trình có 2 nghiệm khác 0 khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m^2-1\right)>0\\m^2-1\ne0\end{matrix}\right.\) \(\Leftrightarrow m\ne\pm1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{3}{4}\Rightarrow4\left(x_1+x_2\right)=3x_1x_2\)

\(\Leftrightarrow8m=3\left(m^2-1\right)\)

\(\Leftrightarrow3m^2-8m-3=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{1}{3}\end{matrix}\right.\)

Đặng Tuấn Minh
Xem chi tiết
Lê Song Phương
2 tháng 11 2021 lúc 14:41

Đặt \(a=1;b=-1;c=m-1\)

a) Để phương trình đã cho có nghiệm thì \(\Delta=b^2-4ac=\left(-1\right)^2-4.1.\left(m-1\right)=1-4m+4=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)

b) Gọi các nghiệm của phương trình đã cho là x1, x2.

Theo định lí Vi-ét, ta có: \(x_1+x_2=-\frac{b}{a}=-\frac{-1}{1}=1\)

Vậy tổng các nghiệm của phương trình đã cho là 1.

Khách vãng lai đã xóa
Châu Tuệ Minh
Xem chi tiết
Châu Tuệ Minh
Xem chi tiết
Nguyễn Thành Trương
21 tháng 3 2020 lúc 20:28

\( a)\Delta ' = b{'^2} - ac = {\left[ { - \left( {m + 1} \right)} \right]^2} - \left( { - 1} \right).\left( {{m^2} + 1} \right)\\ = {m^2} + 2m + 1 + {m^2} + 1 = 2\left( {{m^2} + m + 1} \right)\\ = 2\left[ {{{\left( {m + 1} \right)}^2} - m} \right] \ge 0\forall m \in \mathbb{R} \)

Vậy phương trình có hai nghiệm

$b$ Thay $m=-1$ vào $(1)$ ta được: \(-x^2+2=0\Leftrightarrow-x^2=-2\Leftrightarrow x=\pm\sqrt{2}\)

Khách vãng lai đã xóa
Anh Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 22:33

Thay m=-5 vào (1), ta được:

\(x^2-2x-5-3=0\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow x^2-4x+2x-8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

Hương Hoàng
Xem chi tiết
An Thy
11 tháng 6 2021 lúc 16:36

ý 1: Để pt (1) có 1 nghiệm duy nhất thì \(\Delta=0\)

\(\Delta=\left(-5\right)^2-4m+8=-4m+33\)

\(\Rightarrow33-4m=0\Rightarrow m=\dfrac{33}{4}\)

ý 2: Khi \(m=4\Rightarrow x^2-5x+2=0\)

\(\Delta=\left(-5\right)^2-8=17\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{17}}{2}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{17}}{2}\end{matrix}\right.\)

Vậy...