\( a)\Delta ' = b{'^2} - ac = {\left[ { - \left( {m + 1} \right)} \right]^2} - \left( { - 1} \right).\left( {{m^2} + 1} \right)\\ = {m^2} + 2m + 1 + {m^2} + 1 = 2\left( {{m^2} + m + 1} \right)\\ = 2\left[ {{{\left( {m + 1} \right)}^2} - m} \right] \ge 0\forall m \in \mathbb{R} \)
Vậy phương trình có hai nghiệm
$b$ Thay $m=-1$ vào $(1)$ ta được: \(-x^2+2=0\Leftrightarrow-x^2=-2\Leftrightarrow x=\pm\sqrt{2}\)