cho a,b,c thỏa mãn a>b>0; c lớn hơn bằng \(\sqrt{ab}\). chứng minh:
\(\dfrac{c+a}{\sqrt{c^2+a^2}}\) lớn hơn bằng\(\dfrac{c+b}{\sqrt{c^2+b^2}}\)
a, Cho 3 số thực a, b, c thỏa mãn a+b+c=0. CMR a5+b5+c5=5/2abc(a2+b2+c2)
b, Tìm số thực x thỏa mãn (3x-2)5+(5-x)5+(-2x-3)5=0
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
Cho a;b;c là ba số thực dương, a > 1 và thỏa mãn log 2 a b c + log a b 3 c 3 + b c 4 2 + 4 + 4 - c 2 = 0 . Số bộ a;b;c thỏa mãn điều kiện đã cho là:
A. 0
B. 1
C. 2
D. vô số
Ta có:
Dấu “=” xảy ra khi và chỉ khi
Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.
Chọn B.
a) Cho a,b,c khác 0 thỏa mãn a+ b+c = 0. Tính A=( 1+ a/b) .(1+b/c).(1+c/a)
ta có a+b+c=0 => a=-b-c, b=-a-c, c=-a-b
thay vào A ta được
A=(1-(b+c)/b)(1-(a+c)/c)(1-(a+b)/a)
=(1-1-c/b)(1-1-a/c)(1-1-b/a)
=(-c/b)(-a/c)(-b/a)
=(-abc)/abc
=-1
bạn Nguyễn Thị Lan Hương làm đúng rồi, mk lm cách khác nhé:
BÀI LÀM
\(a+b+c=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{b}=-1\)
Cho a,b,c khác 0 , a+b+c khác 0 thỏa mãn 1/a + 1/b + 1/c = 1/a+b+c
cho a;b;c khác 0 thỏa mãn a+b+c=0. Tính (1+a/b)(1+b/c)(1+c/a)
cho a,b,c>=0 thỏa mãn a+b+c=3. Tìm GTLN của P=(a-b)(b-c)(a-c)
\(P^2=\left(a-b\right)^2\left(b-c\right)^2\left(a-c\right)^2\)
Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\) \(\Rightarrow\left\{{}\begin{matrix}\left(b-c\right)^2\le b^2\\\left(a-c\right)^2\le a^2\end{matrix}\right.\)
\(\Rightarrow P^2\le\left(a-b\right)^2a^2b^2=\dfrac{1}{4}\left(a^2-2ab+b^2\right).\left(2ab\right).\left(2ab\right)\le\dfrac{1}{108}\left(a^2-2ab+b^2+2ab+2ab\right)^3\)
\(\Rightarrow P^2\le\dfrac{1}{108}\left(a+b\right)^6\le\dfrac{1}{108}\left(a+b+c\right)^6=\dfrac{27}{4}\)
\(\Rightarrow P\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3-\sqrt{3}}{2};\dfrac{3+\sqrt{3}}{2};0\right)\) và các hoán vị
cho a,b,c khac 0 thỏa mãn a/b=b/c=c/a . CMR a-b =c
Cho a, b, c thỏa mãn: 0 < a < 1 ; 0 < b < 1 ; 0 < c < 1 v à a + b + c = 2 . Chứng minh: a 2 + b 2 + c 2 < 2
Ta có:
0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)
Tương tự:
0 < b < 1 ⇒ b2 - b < 0 (2)
0 < c < 1 ⇒ c2 - c < 0 (3)
Cộng (1); (2); (3) vế theo vế ta được:
a2 + b2 + c2 - a - b - c < 0
⇔ a2 + b2 + c2 < a + b + c
⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)
\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)
\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)
Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0
Mà abc > 0 nên A \(\ge\)0 => ....
Cho a,b,c khác 0 thỏa mãn a+b+c=0. Tính: A= (1+ a/b)(1+b/c )(1+c/a )