Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
....

cho a,b,c thỏa mãn a>b>0; c lớn hơn bằng \(\sqrt{ab}\). chứng minh:

\(\dfrac{c+a}{\sqrt{c^2+a^2}}\) lớn hơn bằng\(\dfrac{c+b}{\sqrt{c^2+b^2}}\)

Nguyễn Việt Lâm
30 tháng 6 2021 lúc 16:59

\(c\ge\sqrt{ab}\Leftrightarrow\dfrac{c}{a}.\dfrac{c}{b}\ge1\)

BĐT cần chứng minh tương đương:

\(\dfrac{\left(c+a\right)^2}{c^2+a^2}\ge\dfrac{\left(c+b\right)^2}{c^2+b^2}\Leftrightarrow\dfrac{\left(\dfrac{c}{a}+1\right)^2}{\left(\dfrac{c}{a}\right)^2+1}\ge\dfrac{\left(\dfrac{c}{b}+1\right)^2}{\left(\dfrac{c}{b}\right)^2+1}\)

Đặt \(\left(\dfrac{c}{a};\dfrac{c}{b}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}xy\ge1\\y>x\Rightarrow y-x>0\end{matrix}\right.\) (1)

BĐT cần c/m trở thành: \(\dfrac{\left(x+1\right)^2}{x^2+1}\ge\dfrac{\left(y+1\right)^2}{y^2+1}\Leftrightarrow\dfrac{x}{x^2+1}\ge\dfrac{y}{y^2+1}\)

\(\Leftrightarrow xy^2+x\ge x^2y+y\Leftrightarrow xy\left(y-x\right)-\left(y-x\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(y-x\right)\ge0\)  luôn đúng theo (1)

Vậy BĐT đã cho được c/m 

Dấu "=" xảy ra khi \(xy=1\) hay \(c=\sqrt{ab}\)


Các câu hỏi tương tự
friknob
Xem chi tiết
....
Xem chi tiết
Vũ Thanh Lương
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
S U G A R
Xem chi tiết
Người Vô Danh
Xem chi tiết
Nguyễn An
Xem chi tiết
Hoang Tran
Xem chi tiết
minh nguyen
Xem chi tiết