Cho hình chóp SABC đáy là tam giác. M,N là trung điểm của SA,SB và P là điểm thuộc SC sao cho PC=2SP. Tính VSMNP/VSABC. A)4/3. B)1/6. C)1/8. D)1/12
cho hình chóp SABC. SA vuông góc với (ABC). AB=a,SA=a căn 3. Gọi H là hình chiếu của A lên SB. M là trung điểm của SC. Tính VSAHM/VSABC
\(SB=\sqrt{SA^2+AB^2}=2a\)
\(\dfrac{V_{SAHM}}{V_{SABC}}=\dfrac{SH}{SB}.\dfrac{SM}{SC}=\left(\dfrac{SA}{SB}\right)^2.\dfrac{SM}{SC}=\left(\dfrac{a}{2a}\right)^2.\dfrac{1}{2}=\dfrac{1}{8}\)
Cho hình chóp SABC có đáy ABC là tam giác vuông cân (AB = BC = 1) và các cạnh bên SA = SB = SC = 3. Gọi K, L lần lượt là trung điểm của AC và BC, Trên cạnh SA, SB lần lượt lấy các điểm M, N sao cho SM = BN = 1. Tính VLMNK.
Đề bài thiếu bạn.
Đáy ABC chỉ biết 1 cạnh thì không thể xác định được các góc kia
Cần biết thêm 1 cạnh đáy nữa (ví dụ tam giác ABC vuông cân, hoặc cần thêm độ dài AB hay AC)
Cho hình chóp SABC có đáy (ABC) là tam giác vuông cân với AB=BC=1. Các cạnh SA=SB=SC=3. Gọi K,L lần lượt là trung điểm của AC,BC. Trên các cạnh SA,SB lấy các điểm M,N sao cho SM=1,NB=1. Tính thể tích của tứ diện KLMN.
Help me
) Gọi P là tr/điểm AS
=> SA v/góc BP (t/giác SAB đêu)
SA v/góc BM =>SA v/góc (BPM)
Gọi P, Q lần lượt là tr/điểm AS và AJ
=> PQ là đ/t/bình t/giác ASJ
=> SJ // PQ. Mặt khác, t/giác SAJ có:
vuông tại S
=> AS v/góc SJ => AS v/góc PQ
Lại có: AS v/góc BP (t/giác SAB đều) => AS v/góc (BPQ) => AS v/góc BQ, lúc đó M là giao điểm BQ và CD.
AB // JM => . Trong t/giác vuông ADM có:
@Võ Đông Anh Tuấn t/giác SAB cân thôi có đều đâu bạn
Cho hình chóp SABC có đáy ABC là tam giác vuôg tại B và có SA vuôg vs mp (ABC). a/ cm: BC vuôg (SAB) b/ Giả sử SA=a căn 3 và AB= a, tính góc giữa đường thẳng SB và mp(ABC) c/ Gọi AM là đường cao của tam giác SAB, N là điểm thuộc cạnh SC. cm: (AMN) vuôg (SBC)?
Giải giúp mình:cho hình chóp SABC có đáy là tam giác đều cạnh 2a, hình chiếu của S lên ABC là trung điểm AB. Góc giữa SC và (ABC) là 60°. Tính VSABC/a³ là
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm SA,N là điểm thuộc cạnh SB sao cho SN=2NB.
a)Tìm giao điểm P của MN với mặt phẳng (ABCD)
b) Chứng minh PC // (SBD)
c) Gọi H là giao điểm cảu (NPC) với SD và G là trọng tâm của tam giác SCD. Chứng minh (NHG) // (ABCD)
a: Chọn mp(SAB) có chứa MN
Ta có: \(AB\subset\left(SAB\right)\)
\(AB\subset\left(ABCD\right)\)
Do đó: \(\left(SAB\right)\cap\left(ABCD\right)=AB\)
Gọi P là giao điểm của MN với AB
=>P là giao điểm của MN với mp(ABCD)
b: Ta có: SN+NB=SB
=>2NB+NB=SB
=>SB=3NB
=>\(\dfrac{SN}{SB}=\dfrac{2}{3}\)
Xét ΔSBA có P,M,N thẳng hàng
nên \(\dfrac{PB}{PA}\cdot\dfrac{MA}{MS}\cdot\dfrac{NS}{NB}=1\)
=>\(\dfrac{PB}{PA}\cdot1\cdot2=1\)
=>\(\dfrac{PB}{PA}=\dfrac{1}{2}\)
=>B là trung điểm của AP
Trong mp(ABCD), gọi O là giao điểm của AC và BD
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔAPC có
B,O lần lượt là trung điểm của AP,AC
=>BO là đường trung bình của ΔAPC
=>BO//PC
=>BD//PC
Ta có: PC//BD
BD\(\subset\)(SBD)
PC không nằm trong mp(SBD)
Do đó: PC//(SBD)
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA= 2a, S A ⊥ ( A B C ) Gọi M, N lần lượt là trung điểm SA, SB và P là hình chiếu vuông góc của A lên SC. Tính thể tích V của khói chóp S.MNP.
A. a 3 3 30
B. a 3 3 6
C. a 3 3 15
D. a 3 3 10
Đáp án A
Xét tam giác SAC vuông tại A có AP là đường cao, ta có:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA = 2a, SA ⊥ (ABC). Gọi M, N lần lượt là trung điểm SA, SB và P là hình chiếu vuông góc của A lên SC. Tính thể tích V của khói chóp S.MNP.
A. a 3 3 30
B. a 3 3 6
C. a 3 3 15
D. a 3 3 10