Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quốc Lê Minh
Xem chi tiết
Despacito
17 tháng 9 2017 lúc 10:30
Định lý 1Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.[1]

Đề bài minh hoạ:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}.

Chứng minh định lý:

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC} (1)

Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN} (2)

Từ (1) và (2) suy ra {\displaystyle NA=NC}. Định lý được chứng minh.

Định lý 2

Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy.[2]

Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ({\displaystyle MA=MB} và {\displaystyle NA=NC}). Chứng minh {\displaystyle {\overline {MN}}\parallel {\overline {BC}}} và {\displaystyle MN={\frac {1}{2}}BC}.

Chứng minh định lý:

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)

suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}, suy ra {\displaystyle CF=MB} (vì {\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hinh binh hanh, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}. Định lý được chứng minh.

Despacito
16 tháng 9 2017 lúc 21:33

D/L: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

ta lay vd 1 de bai de chung minh:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}

ta chung minh dinh ly

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC} (1)

Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN} (2)

Từ (1) và (2) suy ra {\displaystyle NA=NC}. ( dieu phai chung minh )

D/L : Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy

VD : Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ( và ). Chứng minh  và 

chung minh dinh li

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)

suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}, suy ra {\displaystyle CF=MB} (vì {\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hình bình hành, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}

Quốc Lê Minh
Xem chi tiết
ღυzυкι уυкιкσツ
Xem chi tiết
Trần Ái Linh
6 tháng 8 2021 lúc 21:07

Có: `AD=DB => D` là trung điểm của `AB`.

Mà `K` là trung điểm của `BC`

`=> DK` là đường trung bình của `\DeltaABC`

`=> DK////AC ; DK=1/2 AC`

Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 21:07

Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{1}{2}BC\)

Xét ΔABC có 

D là trung điểm của AB

K là trung điểm của BC

Do đó: DK là đường trung bình của ΔABC

Suy ra: DK//AC và \(DK=\dfrac{AC}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 2 2017 lúc 3:34

Vì AD và BE là 2 đường trung tuyến của ΔABC cắt nhau tại G nên theo tính chất đường trung tuyến, ta có: AG = 2/3 AD

Xem chi tiết
Nguyễn Văn Hưởng
10 tháng 12 2018 lúc 16:28

Cái Này Sẽ Được Chứng Minh Ở Bài Đường Trung Bình Lớp 8, Bạn Tra Mạng Sẽ Có Nhé!

Nguyễn Thị Yến Nga
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2022 lúc 9:34

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

Bảo My Yusa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 3 2017 lúc 11:57

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Gọi D là trung điểm của BC, E là trung điểm của AC. Theo câu a)) đường thẳng qua D, song song với AB phải cắt AC tại trung điểm của AC nên đường thẳng đó phải đi qua E, hay DE // AB.

Lê Thị Phương Thảo
Xem chi tiết
Lê Thị Phương Thảo
6 tháng 1 2016 lúc 21:36

Tam giác nào, bạn thử vẽ hình xem nào.