Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Thị Thanh Vân
Xem chi tiết
Đỗ Hải Yến
Xem chi tiết
Phạm Đăng Khoa
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:26

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:34

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

Horikita Suzune
Xem chi tiết
Phan Nghĩa
10 tháng 5 2021 lúc 20:00

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

Khách vãng lai đã xóa
Hồ Hữu Phong
Xem chi tiết

A = \(\dfrac{n^9+1}{n^{10}+1}\) 

\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n -  \(\dfrac{n-1}{n^9+1}\)

B = \(\dfrac{n^8+1}{n^9+1}\)

\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) =  n - \(\dfrac{n-1}{n^8+1}\)

Vì n > 1 ⇒ n - 1> 0

       \(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)

⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)

⇒ A < B 

 

    

Lê Anh Tú
Xem chi tiết
Nguyễn Anh Quân
21 tháng 1 2018 lúc 20:39

Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1 

Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)

10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1

Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)

Từ (1) và (2) => 10A < 10B

=> A < B

Tk mk nha

Admin (a@olm.vn)
21 tháng 1 2018 lúc 20:15

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\)\(\frac{10^{10}+1}{10^{11}+1}< 1\)

\(\Rightarrow\)\(A,B< 1\)

Ta có:

\(10^{11}-1>10^{10}+1\)\(10^{12}-1>10^{11}+1\)

\(\Rightarrow A>B\)

Vậy A > B

Nguyễn Anh Quân
21 tháng 1 2018 lúc 20:16

Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1

10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1

=> 10A < 10B

=> A < B

Tk mk nha

Hoàng Thu Hương
Xem chi tiết
Akai Haruma
24 tháng 3 2021 lúc 21:02

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

Hồ Hoàng Long
Xem chi tiết

Giải:

Ta có: A=1011-1/1012-1

       10A=10.(1011-1)/1012-1

       10A=1012-10/1012-1

       10A=1012-1-9/1012-1

       10A=1012-1/1012-1 - 9/1012-1

       10A=1-9/1012-1

Tương tự: B=1010+1/1011+1

              10B=1+9/1011+1

Vì -9/1012-1 < 9/1011+1 nên 10A < 10B

Vậy A<B

Chúc bạn học tốt!

Lê Hoàng Ngọc Linh
Xem chi tiết
Lê Hoàng Ngọc Linh
Xem chi tiết