1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
so sánh:
a)C= \(\dfrac{100^{99}+1}{100^{100}+1}\) và D= \(\dfrac{100^{100}+1}{100^{101}+1}\)
b)E=\(\dfrac{2020^{2021}+1}{2020^{2022}+1}\) và F=\(\dfrac{2020^{2020}+1}{2020^{2021}+1}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2021^2}\). So sánh A và \(\dfrac{2020}{2021}\)
Cho a,b,n thuộc Z; b,n>0.
a) Chứng minh: \(\dfrac{a}{b}>1\Leftrightarrow a>b\) và \(\dfrac{a}{b}< 1\Leftrightarrow a< b\)
b) So sánh 2 số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{a+1}{b+1}\)
c) So sánh \(\dfrac{a}{b}\) và \(\dfrac{a+n}{a+n}\)
\(\dfrac{2021}{2021^2+1}và\dfrac{2022}{2022^2+1}\)so sánh
So sánh bt: \(M=\dfrac{100^{100}+1}{100^{99}+1};N=\dfrac{100^{101}+1}{100^{100}+1}\)
1 so sánh \(\dfrac{1}{2^{300}}\) và \(\dfrac{1}{300^{200}}\)
\(\dfrac{1}{5^{199}}\) và\(\dfrac{1}{3^{300}}\)
2 so sánh
5\(^{20}\)và 3\(^{34}\)
(-5)\(^{39}\)và -2\(^{91}\)
3) So sánh các số:
a) 3247 và 6433 b) (\(\dfrac{1}{2}\) )30 và ( \(\dfrac{1}{3}\) )20
Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)