Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiếu Minh
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 11 2021 lúc 19:38

Bài 1:

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)

Lấp La Lấp Lánh
15 tháng 11 2021 lúc 19:40

Bài 2:

a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)

b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)

Lê Mỹ Dung
Xem chi tiết
Lê Nguyên Hạo
12 tháng 4 2017 lúc 14:49

-4^2 hay -4x^2

Lê Mỹ Dung
12 tháng 4 2017 lúc 22:04

Giúp mình giả câu b) ấy mọi người TT^TT

khánh huyền
Xem chi tiết
Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 11 2021 lúc 20:49

\(a,=\dfrac{x^4\left(x-2\right)+2x^2\left(x-2\right)-3\left(x-2\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4+2x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4-x^2+3x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x-1\right)\left(x^2+3\right)}{x+4}\)

\(b,=\dfrac{x^4-3x^2-x^2+3}{x^4-x^2+7x^2-7}=\dfrac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\dfrac{x^2-3}{x^2+7}\\ c,=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\\ =\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x^2+x+1\right)}=\dfrac{x^2-1}{x^2+1}\)

Nguyễn Long
Xem chi tiết
ket dang
28 tháng 9 2022 lúc 20:42

a) A= 3.(x2-2xy+y2)- 2. (x2+2xy+y2) - x2-y2

A= 3.x2-2xy+y2-2. x2+2xy+y2-x2-y2

 

khánh huyền
Xem chi tiết
khánh huyền
Xem chi tiết
khanhhuyen6a5
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2022 lúc 20:51

b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)

=>2=2(luôn đúng)

a: \(\Leftrightarrow\left[\left(x-3\right)^2-\left(x+3\right)^2\right]\left[\left(x-3\right)^2+\left(x+3\right)^2\right]+24x^3=216\)

\(\Leftrightarrow-12x\left(2x^2+18\right)+24x^3=216\)

=>-216x=216

hay x=-1

khanhhuyen6a5
Xem chi tiết
Thúy Nga
14 tháng 7 2018 lúc 17:24

2.a) \(8x^2-4x=0\Rightarrow4x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

b) \(5x\left(x-3\right)+7\left(x-3\right)=0\Rightarrow\left(x-3\right)\left(5x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\5x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1.4\end{matrix}\right.\)

c) \(2x^2=x\Rightarrow2x^2-x=0\Rightarrow x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0.5\end{matrix}\right.\)

d) \(x^3=x^5\Rightarrow x^3-x^5=0\Rightarrow x^3\left(1-x^2\right)=0\\ \Rightarrow x^3\left(1-x\right)\left(1+x\right)=0\Rightarrow\left[{}\begin{matrix}x^3=0\\1-x=0\\1+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2+2x\right)=0\Rightarrow\left(x+1\right)x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

g. \(x\left(2x-3\right)-2\left(3-2x\right)=0\)

\(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1.5\\x=-2\end{matrix}\right.\)