Cho ∆abc cân tại A ,hai trung tuyến bm,cn cắt nhau tại K. a,∆BMC=∆CMB b,BKC cân tại K c, MN// BC
tam giác ABC cân tại A hai trung tuyến BM ,CN cắt nhau tại k. Chứng minh
a) tam giác BNC = tam giác CMB
B) BKC cân tại K
C) MN // BC
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
Cho tam giác ABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :
a) tam giác BNC bằng tam giác CMB
B) tam giác BKC cân tại k
C) MN song song BC
tự kẻ hình nghen
a) ta có AB=AC=> 1/2AB=1/2AC=> AN=NB=AM=MC
xét tam giác BNC và tam giác CMB có
NB=MC(cmt)
ABC=ACB(gt)
BC chung
=> tam giác BNC= tam giác CMB(cgc)
b) từ tam giác BNC=tam giác CMB=> MBC=NCB( hai góc tương ứng)
=> tam giác BKC cân K
c) Vì AM=AN(cmt)=> tam giác AMN cân A=> AMN=ANM=(180-MAN)/2
vì tam giác ABC cân A=> ABC=ACB=(180-BAC)/2
=> AMN=ACB mà AMN đồng vị với ACB=> MN//BC
Cho tam giác ABC cân tại A và 2 đường trung tuyến BM, CN cắt nhau tại K. Chứng minh
a)Tam giác BNC=Tam giác CMB
b)Tam giác BKC cân tại A
c)MN // BC
C) MN // BC
o l m . v n
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
Cho tam giác ABC cân tại A, hai đường trung tuyến BM, CN cắt nhau tại K.
a) C/m : tam giác BNC = tam giác CMB
b) C/m : tam giác BKC cân tại K.
c) C/m : BC < 4.KM
a) vì tam giác ABC cân tại A
nên AB=AC; \(\widehat{B}=\widehat{C}\)
mà CN và BM là đường trung tuyến
=>BM=NC
=>AN=BN ; AM=CM
Xét \(\Delta BNC\)và \(\Delta CMB\)
có: BC là cạnh chung
BN=CM (gt)
BM=NC (gt)
do đó: \(\Delta BNC=\Delta CMB\)
Cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K
Chứng minh rằng:
a) Tam giác BNC= Tam giác CMB
b) Tam giác BKC cân tại K
c) BC < 4.KM
Cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K
Chứng minh rằng:
a) Tam giác BNC= Tam giác CMB
b) Tam giác BKC cân tại K
c) BC < 4.KM
bạn tự vẽ hình nhé
a)Ta có: AB=AC (tam giác ABC cân tại A)
mà BN=AB/2 (dường trung tuyến CN)
và CM=AC/2 (đường trung tuyến BM)
=>BN=CM
Xét tam giác BNC và tam giác CMB, có:
BC chung
BN=CM (cmt)
góc NBC=góc MCB (tam giác ABC cân tại A)
=> tam giác BNC=tam giác CMB (c.g.c)
b)Ta có: góc NCB=góc MBC (tam giác BNC= tam giác CMB)
=> tam giác KBC cân tại K
c)Xét tam giác ABC có
N là trung điểm của AB (đường trung tuyến CN)
và M là trung diểm của AC (đường trung tuyến BM)
=>NM là đường trung bình của tam giác ABC
=>NM=BC/2
mà NM<NK+KM ( bất đẳng thức cạnh trong tam giác)
=>BC/2<NK+KM
mà NK=CN-CK
=> BC/2<CN-CK+KM
mà CN=BM (tam giác BNC = tam giác CMB)
và CK=BK (tam giác KBC cân tại K)
=>BC/2<BM-BK+KM
=>BC/2<2KM
=>BC<4KM
Cho tam giác ABC cân và hai đường trung tuyến BM, CN cắt nhau tại K
a, CM: tam giác BNC=tam giác CMB
b, CM tam giác BKC cân tại K
c, CM BC<4KM
Ta có: AN = BN = \(\dfrac{1}{2}\)AB (N là trung điểm của AB)
AM = CM = \(\dfrac{1}{2}\)AC (M là trung điểm của AC)
Mà AB = AC ( do tam giác ABC cân tại A)
=> AN = BN = AM = CM
Xét tam giác BNC và tam giác CMB:
+ BC chung
+ ^B = ^C (tam giác ABC cân tại A)
+ BN = CM (cmt)
=> Tam giác BNC = tam giác CMB (c-g-c)
=> ^NCB = ^MBC (2 góc tương ứng)
Hay ^KCB = ^KBC
=> Tam giác BKC cân tai K
Xét tam giác ABC: M là trung điểm của AC (gt)
N là trung điểm của AB (gt)
=> MN là đường trung bình của tam giác ABC (định nghĩa đường trung bình trong tam giác)
=> MN // BC (TC đường trung bình trong tam giác)
a) Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AN=NB=AM=MC
Xét ΔBNC và ΔCMB có
BN=CM(cmt)
\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔBNC=ΔCMB(c-g-c)
b) Xét ΔANC và ΔABM có
AN=AM(cmt)
\(\widehat{NAC}\) chung
AC=AB(ΔABC cân tại A)
Do đó: ΔANC=ΔABM(c-g-c)
⇒\(\widehat{ACN}=\widehat{ABM}\)(hai góc tương ứng)
hay \(\widehat{NBK}=\widehat{MCK}\)
Xét ΔNBK có
\(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)
Xét ΔMCK có
\(\widehat{MCK}+\widehat{MKC}+\widehat{CMK}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)
Từ (1) và (2) suy ra \(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=\widehat{MCK}+\widehat{MKC}+\widehat{CMK}\)
mà \(\widehat{NBK}=\widehat{MCK}\)(cmt)
và \(\widehat{NKB}=\widehat{MKC}\)(hai góc đối đỉnh)nên \(\widehat{BNK}=\widehat{CMK}\)Xét ΔNBK và ΔMCK có \(\widehat{BNK}=\widehat{CMK}\)(cmt)BN=CM(cmt)\(\widehat{NBK}=\widehat{MCK}\)(cmt)Do đó: ΔNBK=ΔMCK(g-c-g)⇒KB=KC(hai cạnh tương ứng)Xét ΔKBC có KB=KC(cmt)nên ΔKBC cân tại K(Định nghĩa tam giác cân)giúp mình nha à mà đề này là đề chuẩn nên không được sửa nha và cảm ơn bạn nào giúp mình trước nhé
Cho tam giác ABC cân tại A và 2 đường trung tuyến BM, CN cắt nhau tại K. Chứng minh
a)Tam giác BNC=Tam giác CMB
b)Tam giác BKC cân tại A
c)BC<4.KM
a) Ta có: ΔABC cân tại A
Nên: AB=AC
Mà: CN là đường trung tuyến => NB=NA
BM là đường trung tuyến => MA=MC
Suy ra: NB=NA=MA=MC
Xét ΔBNC và ΔCMB
Có: BN=CM (cmt)
\(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)
BC chung
Suy ra: ΔBNC=ΔCMB (c-g-c)