ý a, tui chữa lại đề là \(\Delta BMC=\Delta CNB\)
a, do \(\Delta ABC\) cân tại A\(=>\left\{{}\begin{matrix}AB=AC\\\angle\left(B\right)=\angle\left(C\right)\left(1\right)\end{matrix}\right.\)
mà BM,CN là các trung tuyến\(=>\left\{{}\begin{matrix}BN=\dfrac{1}{2}AB\\CM=\dfrac{1}{2}AC\end{matrix}\right.\)
\(=>BN=CM\left(2\right)\)
có BC cạnh chung (3)
từ(1)(2)(3)\(=>\Delta BMC=\Delta CNB\left(c.g.c\right)\)
b,do \(\Delta BMC=\Delta CNB\left(cmt\right)=>\angle\left(KBC\right)=\angle\left(KCB\right)\)
\(=>\Delta BKC\) cân tại K
c, do \(\left\{{}\begin{matrix}BN=NA\\CM=AM\end{matrix}\right.\)=>MN là đường trung bình \(\Delta ABC=>MN//BC\)