Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệu An Bùi
Xem chi tiết
Khánh Ly
22 tháng 9 2019 lúc 22:12
https://i.imgur.com/qYKcsE4.jpg
thaonguyen
Xem chi tiết
Eriken
22 tháng 9 2019 lúc 9:41

thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải

Thiên Long
24 tháng 9 2019 lúc 13:22

1/ Biến đổi vế trái , ta có :

(x-y)(x+y)= x2+xy - xy-y2= x2-y2

=> (x-y) (x+y) =x2-y2

2/ Biến đổi vế trái , ta có :

(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3

= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3

=> (x-y) (x2+xy+y2) =x3-y3

3/ / Biến đổi vế trái , ta có :

(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3

(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3

lê bảo châu
Xem chi tiết
Pé Ngọc Kòi
30 tháng 9 2018 lúc 20:09

a)(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

=> Đt trên Đ

b) CM tương tự nha

Nguyễn Đăng Nhân
Xem chi tiết
Nguyễn Ngọc lâm
16 tháng 9 2023 lúc 20:19

khó thế

Mai Khánh Linh
16 tháng 9 2023 lúc 20:29

P = x(x - y) - x + y2(x - y) - y2 + 5

P = x - x + y- y2 + 5

P = 5
 

Q = x2(x - y) - x2 + y2(x - y) - y2 + 5(x - y) - 2015

Q = 5 - 2015

Q = -2010

Sakura kinomoto
Xem chi tiết
Nguyenngocdiem
Xem chi tiết
Phùng Công Anh
25 tháng 6 2023 lúc 21:20

`1,`

Cách 1: Chứng minh theo hằng đẳng thức

`(x-1)(x^2+x+1)=x^3-1^3=x^3-1`

Cách 2: Chứng minh theo tích chất phân phối

`(x-1)(x^2+x+1)=x(x^2+x+1)-(x^2+x+1)=x^3+x^2+x-x^2-x-1=x^3-1`

........

`2,` Xem lại đề

huy nguyen
Xem chi tiết
lê thị thu huyền
19 tháng 6 2017 lúc 18:50

\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)

\(=x^3+y^3+x^3-y^3-2x^3\)( hằng đẳng thức số 6+7 )

\(=\left(x^3+x^3\right)+\left(y^3-y^3\right)-2x^3\)

\(=2x^3-2x^3+0=0+0=0\)

vậy giá trị của biểu thức không phụ thuộc vào biến x, y.

khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Trần Thị Phú An
Xem chi tiết