Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Zeres
Xem chi tiết
Anh Quynh
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 9 2021 lúc 11:50

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)

 

Tuấn Nguyễn
Xem chi tiết
Nguyễn Vân Hương
Xem chi tiết
Lê Song Phương
Xem chi tiết
IR IRAN(Islamic Republic...
10 tháng 9 2023 lúc 14:26

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

Hương Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 13:20

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3

tiểu an Phạm
Xem chi tiết
Hà Ngọc Uyên
9 tháng 5 2020 lúc 15:44

giải hệ phương trình mình chịu nhe bn

Khách vãng lai đã xóa
Khuất Minh Anh
9 tháng 5 2020 lúc 15:47

là sao ta

Khách vãng lai đã xóa
Tran Le Khanh Linh
10 tháng 5 2020 lúc 16:48

\(\hept{\begin{cases}\left(x+\sqrt{x^2+2x+2}+1\right)\left(y+\sqrt{y^2+1}\right)=1\left(1\right)\\x^2-3xy-y^2=3\left(2\right)\end{cases}}\)

Ta có \(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+2x+2}+1\right)\left(\sqrt{y^2+1}+y\right)\left(\sqrt{y^2+1}-y\right)=\sqrt{y^2+1}-y\)

(Do \(\sqrt{y^2+1}-y\ne0\forall y\))

\(\Leftrightarrow x+1+\sqrt{\left(x+1\right)^2+1}=-y+\sqrt{y^2+1}\)

\(\Leftrightarrow x+y+1+\frac{\left(x+1\right)^2+y^2}{\sqrt{\left(x+1\right)^2+1}+\sqrt{y^2+1}}=0\)

\(\Leftrightarrow\left(x+y+1\right)\left(1+\frac{x+1-y}{\sqrt{\left(x+1\right)^2+1}+\sqrt{y^2+1}}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+1=0\\\sqrt{\left(x+1\right)^2+1}+\sqrt{y^2+1}-y=0\left(3\right)\end{cases}}\)

Do \(\sqrt{\left(x+1\right)^2+1}>\left|x+1\right|\ge x+1\forall x\)và \(\sqrt{y^2+1}>\left|y\right|\ge y\forall y\)nên (3) vô nghiệm

Thay y=-x-1 vào (2) ta tìm được \(\orbr{\begin{cases}x=1\\x=\frac{-4}{3}\end{cases}}\)

Với x=1 => y=-2

Với x=\(\frac{-4}{3}\)=> y=\(\frac{1}{3}\)

Vậy các cặp (x;y) thỏa mãn điều kiện là: \(\left(x;y\right)=\left\{\left(1;-2\right);\left(\frac{-4}{3};\frac{1}{3}\right)\right\}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Linh Nhi
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 10 2016 lúc 22:56

Ta có : \(\hept{\begin{cases}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{cases}}\)

Xét phương trình đầu : \(2x^2+y^2-3xy-4x+3y+2=0\)

\(\Leftrightarrow\left(2x^2-xy-2x\right)+\left(-2xy+y^2+2y\right)+\left(-2x+y+2\right)=0\)

\(\Leftrightarrow x\left(2x-y-2\right)-y\left(2x-y-2\right)-\left(2x-y-2\right)=0\)

\(\Leftrightarrow\left(2x-y-2\right)\left(x-y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-y-2=0\\x-y-1=0\end{cases}}\)

Từ đó thay y bởi x vào pt còn lại để tìm nghiệm.

Nguyễn Ngọc Linh Nhi
2 tháng 10 2016 lúc 23:11

giúp mình câu khác với

Trần Cao Vỹ Lượng
3 tháng 10 2016 lúc 20:30

khó thật đấy

ngọc hân
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2021 lúc 13:37

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)

\(\Rightarrow3x^2-8xy+4y^2=0\)

\(\Rightarrow\left(3x-2y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{3}{2}x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu...

Lấp La Lấp Lánh
7 tháng 10 2021 lúc 13:40

\(\left\{{}\begin{matrix}2x^2-3xy+y^2=3\\x^2+2xy-2y^2=6\end{matrix}\right.\)\(\left(1\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)

\(\Leftrightarrow3x^2-8xy+4y^2=0\)

\(\Leftrightarrow3x\left(x-2y\right)-2y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(3x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=\dfrac{2y}{3}\end{matrix}\right.\)

Thay vào \(\left(1\right)\) ta được:

\(\Leftrightarrow\left[{}\begin{matrix}2.\left(2y\right)^2-3.2y.y+y^2=3\\2.\left(\dfrac{2y}{3}\right)^2-3.\dfrac{2y}{3}.y+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2=1\\y^2=-27\left(VLý\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy ...