B=1/1.5+1/5.9+1/9..13+1/13.17+1/17.21+1/21.25+1/25.29
1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
A= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
4A= 4/5.9+4/9.13+4/13.17+4/17.21+4/21.25
4A= (1/5-1/9)+(1/9-1/13)+(1/13-1/17)+(1/17-1/21)+(1/21-1/25)
4A= 1/5- 1/25
4A= 4/25
A= 4/25 :4
A= 1/25
Tính tổng S= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
\(4S=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\right)\)
=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{21.25}_{ }\)
=\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{21}-\frac{1}{23}\)
=\(\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
=> \(S=\frac{4}{25}:4=\frac{4}{25}.\frac{1}{4}=\frac{1}{25}\)
\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{21\times25}\)
\(S\times4=\frac{4}{5\times9}=\frac{4}{9\times13}+...+\frac{4}{21\times25}\)
\(S\times4=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\)
\(S\times4=\frac{1}{5}-\frac{1}{25}\)
\(S\times4=\frac{4}{25}\)
\(S=\frac{1}{25}\)
ta có S= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
<=>4S=4.(1/5.9+1/9.13+1/13.17+1/17.21+1/21.25)
<=>4S=4/5.9+4/9.13+4/13.17+4/17.21+4/21.25
<=>4S=1/5-1/9+1/9-1/13+1/13-1/17+1/21-1/25
<=>4S=1/5-1/25
<=>4S=4/25
<=>S=4/25:4
<=>S=1/25
vậy S=1/25
Tính :
\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9\cdot}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(=\frac{8400}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\right)\)
\(=2100\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(=2100\left(1-\frac{1}{25}\right)\)
\(=2100\cdot\frac{24}{25}\)
\(=2016\)
\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400.\left(\frac{1.4}{1.5.4}+\frac{1.4}{5.9.4}+\frac{1.4}{9.13.4}+\frac{1.4}{13.17.4}+\frac{1.4}{17.21.4}+\frac{1.4}{21.25.4}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{25}\right)\)
\(A=8400.\frac{1}{4}.\frac{24}{25}\)
\(A=2016\)
\(A=8400.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(A=8400.\left(1-\frac{1}{25}\right)\)
\(A=8400.\frac{24}{25}=8064\)
\(->A=8064\)
\(\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+\dfrac{1}{17.21}+\dfrac{1}{21.25}\) (Tính tổng)
\(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{21.25}\\ =\dfrac{4\cdot\dfrac{1}{4}}{5.9}+\dfrac{4\cdot\dfrac{1}{4}}{9.13}+...+\dfrac{4\cdot\dfrac{1}{4}}{21.25}\\ =\dfrac{1}{4}\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{21.25}\right)\\ =\dfrac{1}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{21}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{25}\right)=\dfrac{1}{4}\left(\dfrac{5}{25}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\cdot\dfrac{4}{25}=\dfrac{1}{25}\)
`1/(5.9) + 1/(9.13) + ...+ 1/(21.25)`
`= 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/21 - 1/25`
`= 1/5 - 1/25`
`= 4/25`
Nhanh +Đúng = Tick ( gắp )
\(A=\frac{1}{2.5}\frac{1}{5.8}\frac{1}{8.11}\frac{1}{11.14}\frac{1}{14.17}\frac{1}{17.20}\)
\(B=8400.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
- A ở trên giữa các phân số là dấu " + " nha mấy bạn !
Tính
B=5/10.11+5/11.12+5/12.13+...+5/19.20
C=1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
D=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
Cuu minh voi !!!!!!!
\(B=\frac{5}{10.11}+\frac{5}{11.12}+\frac{5}{12.13}+...+\frac{5}{19.20}\)
\(B=5.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{19.20}\right)\)
\(B=5.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(B=5.\left(\frac{1}{10}-\frac{1}{20}\right)\)
\(B=5.\frac{1}{20}=\frac{1}{4}\)
\(C=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\)
\(4C=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(4C=\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\)
\(4C=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\)
\(4C=\frac{1}{5}-\frac{1}{25}=\frac{4}{25}\)
\(C=\frac{4}{25}:4=\frac{1}{25}\)
Câu B mình giải hơi bị lỗi xíu!! Mk viết lại nhé
B=5/10.11+5/11.12+5/12.13+...+5/19.20
B=5(1/10.11+1/11.12+1/12.13+...+1/19.20)
B=5(1/10-1/11+1/11-1/12+1/12-1/13+...+1/19-1/20)
B=5( 1/10-1/20)
B=5.1/20
B=1/4
\(\dfrac{1}{5.9}\) + \(\dfrac{1}{9.13}\) + \(\dfrac{1}{13.17}\) + \(\dfrac{1}{17.21}\) + \(\dfrac{1}{21.15}\)
Tính chất của phân số bạn cần biết như sau:
\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)
Gọi biểu thức trên là A ,ta có:
\(A=\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+\dfrac{1}{13\cdot17}+\dfrac{1}{17\cdot21}+\dfrac{1}{21\cdot25}\)
\(4A=\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+\dfrac{4}{13\cdot17}+\dfrac{4}{17\cdot21}+\dfrac{4}{21\cdot25}\)
\(4A=\dfrac{9-5}{5\cdot9}+\dfrac{13-9}{9-13}+\dfrac{17-13}{13\cdot17}+\dfrac{21-17}{17\cdot21}+\dfrac{25-21}{21\cdot25}\)
Áp dụng tính chất phân số đã nêu ở trên, ta được:
\(4A=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{25}\)
\(4A=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{5}{25}-\dfrac{1}{25}=\dfrac{4}{25}\)
\(A=4A:4=\dfrac{4}{25}:4=\dfrac{16}{25}\)
Vậy \(A=\dfrac{16}{25}\)
Chứng tỏ
A=1/2^2+1/3^2+1/4^2+...+1/2014^2<3/4
B=1/2.3+1/3.4+...+1/6.7<1/2
C=4/1.5+4/5.9+4/9.13+4/13.17+4/17.21<1
D=1/2^2+1/3^3+1/4^2+...+1/10^2<1
A = 4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + 4/ 17.21 < 1
các bạn giúp mình nha ! mình rất gấp tất cả chỉ là phân số thôi
Chứng minh \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)
\(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(A=\frac{1}{1}-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(\frac{20}{21}< 1\)
=> \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)( đpcm )
* Mình sợ sai xD *