Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hoàng Nguyên
Xem chi tiết
Thái Sơn Phạm
Xem chi tiết
Kim Taehyungie
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2019 lúc 7:25

\(B=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}< \frac{2018}{2019}+\frac{2019}{2020}=A\)

\(\Rightarrow B< A\)

Trần Thùy Dương
Xem chi tiết
Hoàng Thị Trà My
Xem chi tiết
👁💧👄💧👁
13 tháng 5 2019 lúc 22:17

Có: \(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}+1-2018+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)

\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}+2-2018+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)

Mà: \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)

\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\\ \Rightarrow A>B\)

Nam Ruby
Xem chi tiết
Nguyệt
11 tháng 1 2019 lúc 18:25

\(\frac{a+2019}{a-2019}=\frac{b+2019}{b-2019}\Leftrightarrow\left(a+2019\right).\left(b-2019\right)=\left(a-2019\right).\left(b+2019\right)\)

\(\Rightarrow ab-2019a+2019b-2019^2=ab+2019a-2019b-2019^2\)

\(\Leftrightarrow-2019a+2019b=2019a-2019b\Rightarrow2.2019b=2.2019a\Rightarrow2019a=2019b\Rightarrow\frac{a}{b}=\frac{2019}{2019}\)(vì a,b khác 0)

t chắc rằng đề lỗi =.=' có gì bỏ qua 

bảo nam trần
Xem chi tiết
Nguyễn Linh Chi
4 tháng 6 2019 lúc 17:23

\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)

\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên

Nguyễn Thị Ngọc Thơ
4 tháng 6 2019 lúc 17:18

\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)

\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)

\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)

Vậy B có giá trị là 1 số tự nhiên.

bảo nam trần
4 tháng 6 2019 lúc 17:01
Cay keo ngot
Xem chi tiết
nguyễn tuấn thảo
27 tháng 6 2019 lúc 14:43

\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)

\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)

\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)

\(\Rightarrow A\)>\(3-1=2\)

\(B=\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow B=1-\frac{3}{6054}\)

\(\Rightarrow B=1-\frac{1}{2018}\)

\(B\)<\(1\);\(A\)>\(2\)

\(\Rightarrow A\)>\(B\)

Xem chi tiết

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020