Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi Vũ
Xem chi tiết
missing you =
23 tháng 6 2021 lúc 16:52

\(F=-3x^2-6x-4=-\left(3x^2+6x+4\right)\)

\(=-3\left(x^2+2x+\dfrac{4}{3}\right)=-3\left(x^2+2x+1+\dfrac{1}{3}\right)\)

\(=-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]\)

\(do\) \(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+\dfrac{1}{3}\ge\dfrac{1}{3}\)

\(=>-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]\le-1\)

\(=>-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]< 0\)\(=>F< 0\left(\forall x\right)\)

Bắp
Xem chi tiết
Bắp
12 tháng 8 2019 lúc 9:13

Giúp mk với ạ

Khánh Linh
Xem chi tiết
Akai Haruma
27 tháng 8 2021 lúc 9:43

Lời giải:

a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên

$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$

Vậy biểu thức luôn nhận giá trị âm với mọi $x$

b.

$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$

$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

c.

$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

d.

$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

Alpaca
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 9 2021 lúc 21:42

\(E=x^2+6x+11\)

\(=x^2+6x+9+2\)

\(=\left(x+3\right)^2+2>0\forall x\)

\(F=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

Channel Shinshi
Xem chi tiết
Channel Shinshi
29 tháng 3 2020 lúc 22:41

cảm ơn các bạn nhiều

Khách vãng lai đã xóa
Tiểu Thiên Yết
31 tháng 3 2020 lúc 14:20

\(-\frac{1}{4}x^2+x-2\)

\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)

\(=-\left(\frac{1}{2}x-1\right)^2-1\)

Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)

Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến

Khách vãng lai đã xóa
Tiểu Thiên Yết
31 tháng 3 2020 lúc 14:23

\(\left(1-2x\right)\left(x-1\right)-5\)

\(=x-1-2x^2+2x-5\)

\(=-2x^2+3x-6\)

\(=-2\left(x^2-2\cdot\frac{3}{4}x+\frac{9}{16}\right)-\frac{39}{8}\)

\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\)

Mà \(\left(x-\frac{3}{4}\right)^2\ge0\Rightarrow-2\left(x-\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}< 0\)

Vậy \(\left(1-2x\right)\left(x-1\right)-5\) luôn nhận giá trị âm với mọi giá trị của biến

Khách vãng lai đã xóa
Hồ Thị Huệ Kiều
Xem chi tiết
Trịnh Thục Đoan
21 tháng 9 2022 lúc 19:59

Không biê

nguyenngocbaochau
Xem chi tiết
nguyenngocbaochau
16 tháng 7 2021 lúc 11:00

mng giúp e với ặk

Alpaca
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 9 2021 lúc 21:18

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2018 lúc 10:22