bài 2:Tìm x biết
A:x-\(2\sqrt{x}\)=0
B;x\(\sqrt{x}\)+x-2=0
C:x-\(2\sqrt{x}\)-15=0
D:x-\(6\sqrt{x}\)+9=0
Mai mình phải nộp bài rồi ạ.Mong các bạn giúp đỡ.Mình sẽ tích cho những ai giải nhanh nhất.Cảm ơn các bạn nhiều<3
Bài 1. Tìm điều kiện để các biểu thức sau có nghĩa:
a. \(\sqrt{2+8x}\).
b. \(\sqrt{\dfrac{-1}{5}x+9}\)
c.\(\sqrt{11-7x}\)
Bài 2. Rút gọn các biểu thức sau:
a. \(\sqrt{48a}\) . \(\sqrt{3a}\) \(-2a\) với a \(\ge\) 0
b. \(\dfrac{1}{3}\sqrt{54}-3\sqrt{24}-\dfrac{\sqrt{66}}{\sqrt{11}}\)
Bài 3: Tìm x, biết:
a. \(\sqrt{\left(2x+3\right)^2}=3\)
b. \(\sqrt{4\left(x-2\right)}-4\sqrt{x-2}+\sqrt{9\left(x-2\right)}=4\)
Bài 1:
\(a,ĐK:2+8x\ge0\Leftrightarrow x\ge-\dfrac{1}{4}\\ b,ĐK:-\dfrac{1}{5}x+9\ge0\Leftrightarrow-\dfrac{1}{5}x\ge-9\Leftrightarrow x\le45\\ c,ĐK:11-7x\ge0\Leftrightarrow x\le\dfrac{11}{7}\)
Bài 2:
\(a,=\sqrt{144a^2}-2a=12\left|a\right|-2a=12a-2a=10\\ b,=\sqrt{6}-6\sqrt{6}-\sqrt{6}=-6\sqrt{6}\)
Bài 3:
\(a,\Leftrightarrow\left|2x+3\right|=3\Leftrightarrow\left[{}\begin{matrix}2x+3=3\\2x+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\\ b,ĐK:x\ge2\\ PT\Leftrightarrow2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=4\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
Bài 1 rút gọn
a)\(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)với a
≥0
b)\(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
c)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
giải hộ mik
a: Ta có: \(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+3\sqrt{5a}\)
\(=4\sqrt{5a}\)
b: Ta có: \(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
\(=4a\sqrt{10}+\dfrac{1}{2}\cdot2a\sqrt{10}-3\cdot3a\sqrt{10}\)
\(=-4a\sqrt{10}\)
c: Ta có: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
\(=\left|x-1\right|-\left|x-2\right|\)
bài 1:giải phương trình
a)\(\sqrt{9x^2+12x+4}-4\) = 0
b)\(3\sqrt{x+3}-\sqrt{x-5}\) = 0
c)\(x-7+\sqrt{x-1}\) = 0
giải cụ thể chi tiết giúp mk vớiiiiii ạ
a: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
Bài : Rút gọn biểu thức sau
a) (1-\(\sqrt{x}\) ) (1+\(\sqrt{x}\) +x) - \(\sqrt{x^3}\) với x ≥ 0
b. ( \(\dfrac{1-\sqrt{a}}{1-a}\))2 . (\(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\)+ \(\sqrt{a}\) với a ≥ 0 , a≠0
Ôn Tập Cơ Bản
1) Tìm điều kiện để các biểu thức sau có nghĩa:
a) \(\sqrt{11-2x}\)
b) \(\sqrt{9x-18}\)
c) \(\sqrt{\dfrac{3}{x^2}}\)
d) \(\sqrt{\dfrac{5}{x-7}}\)
2) Rút gọn:
a) \(\sqrt{16x^2}-2x^2\) với x \(\ge\) 0
b) \(\sqrt{9\left(x+5\right)^2}+2-3x\) với x
c) \(\sqrt{\left(x-5\right)^2}-4x\) với x < 5
\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)
Bài 2:
a: \(\sqrt{16x^2}-2x^2=4x-2x^2\)
c: \(\sqrt{\left(x-5\right)^2}-4x=5-4x-x=5-5x\)
Bài 1: Giải các phương trình sau:
a) 3x ^ 2 - 5x + 2 = 0
d) - 4x ^ 2 + 25 = 0
b) 11x - 2x ^ 2 = 0
e) sqrt(x ^ 2 - x + 9) = 2x + 1
c) x ^ 2 + 5x + 7 = 0
f) 6x ^ 4 - 7x ^ 2 + 1 = 0
a: =>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
b: =>2x^2=11
=>x^2=11/2
=>\(x=\pm\dfrac{\sqrt{22}}{2}\)
c: Δ=5^2-4*1*7=25-28=-3<0
=>PTVN
f: =>6x^4-6x^2-x^2+1=0
=>(x^2-1)(6x^2-1)=0
=>x^2=1 hoặc x^2=1/6
=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)
d: =>(5-2x)(5+2x)=0
=>x=5/2 hoặc x=-5/2
e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2
=>3x^2+5x-8=0 và x>=-1/2
=>3x^2+8x-3x-8=0 và x>=-1/2
=>(3x+8)(x-1)=0 và x>=-1/2
=>x=1
bài 1: Tìm x
a. x(x-2)-x^2+1=0
b.(2x-1)^2-(x+4)^2=0 giúp mình với ạ
\(a,\Leftrightarrow x^2-2x-x^2+1=0\\ \Leftrightarrow-2x+1=0\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(2x-1-x-4\right)\left(2x-1+x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(3x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Bài 1: Tìm x
a) (x+2)(x2-2x+4)+(x+2)2=0
b) 9x2-4-(3x-2)2=0
a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4+x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{23}{4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(N\right)\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\left(L\right)\end{matrix}\right.\)
Vậy \(S=\left\{-2\right\}\)
b) \(9x^2-4-\left(3x-2\right)^2=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x-2\right)^2=0\)
\(\Leftrightarrow\left(3x-2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2-3x+2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\cdot4=0\)
\(\Leftrightarrow3x-2=0\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(S=\left\{\dfrac{2}{3}\right\}\)
Bài 1: tìm x
a, (3x-5)2 - (x-1)2 = 0
b, 16(2-3x) + x2(3x-2) =0
Bài 2:
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a, (3x-5)^2 - (x-1)^2 = 0
(3x-5-x+1)(3x-5+x-1) =0
(2x-4)(4x-6)=0
Do đó: 2x-4=0 hoặc 4x-6=0
Th1: 2x-4=0 => 2x=4
=> x=2
Th2: 4x-6=0 => 4x=6
=> x = 4/6 =2/3
Vậy x = 2 ; 2/3
Bài 2. Tìm x, biết:
a/ (x – 4)(x + 4) - x(x + 2) = 0
b/ 3x(x – 2) – x + 2 = 0
c/ 6x - 12x2 = 0
d/ 4x(3 - 14x) + (x – 2)(x + 2) = 0
\(a,\Leftrightarrow x^2-16-x^2-2x=0\\ \Leftrightarrow2x=-16\Leftrightarrow x=-8\\ b,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ c,\Leftrightarrow6x\left(1-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\\ d,\Leftrightarrow12x-56x^2+x^2-16=0\\ \Leftrightarrow55x^2-12x+16=0\\ \Delta=144-4\cdot55\cdot16< 0\\ \Leftrightarrow x\in\varnothing\)