Tính\(\sqrt[3]{9-4\sqrt{5}}+\sqrt[3]{9+4\sqrt{5}}\)
tính
\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
Áp dụng: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)
Ta đặt: \(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}.x\)
\(=18+3\sqrt[3]{81-80}.x\)
\(=18+3x\)
\(\Rightarrow x^3-18-3x=0\)
\(\Rightarrow x^3-3x^2+3x^2-9x+6x-18=0\)
\(\Leftrightarrow x^2\left(x-3\right)+3x\left(x-3\right)+6\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)
Vì \(x^2+3x+6=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{15}{4}=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)
Suy ra: x - 3 = 0
=> x = 3
Vâỵ \(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}=3\)
Tính A \(=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}\)
\(+3\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)
\(\Leftrightarrow A^3=18+3A\Leftrightarrow A^3-3A-18=0\)
\(\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)
Dễ thấy : \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}\ge0\forall A\)
\(\Leftrightarrow A=3\)
Chúc bạn học tốt !!!
\(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}\)
\(+3\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)
\(\Leftrightarrow A^3+18+3A\Leftrightarrow A^3-3A-18=0\)
\(\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)
Dễ thấy : \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}\ge0\forall A\)
\(\Leftrightarrow A=3\)
Chúc bạn học tốt !!!
tính ;\(\sqrt{2-\sqrt[3]{3+\sqrt[4]{4-\sqrt[5]{5+\sqrt[6]{6-\sqrt[7]{7+\sqrt[8]{8-\sqrt[9]{9}}}}}}}}\)
Mình dùng máy casio nhé bạn.
KQ; 0,6151214812.
Bạn có cần cách làm không?
Thực hiện phép tính (rút gọn biểu thức)
a) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
c) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
Lời giải:
a.
\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)
$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$
b.
$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$
$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$
$=|\sqrt{3}-3|+|\sqrt{3}+3|$
$=(3-\sqrt{3})+(\sqrt{3}+3)=6$
c.
$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$
$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$
$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$
Tính:
A=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
B=\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
C=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D=\(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)(2 cách)
F=\(\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{3-2\sqrt{2}}}-\dfrac{\sqrt{17}+12\sqrt{2}}{\sqrt{3+2\sqrt{2}}}\)
\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)
\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)
\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)
\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)
\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)
\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)
\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)
----------------------------
\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)
\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)
\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)
\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
Cách 1:
\(E=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)
\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
Cách 2:
\(E^2=(4+\sqrt{15})^2(\sqrt{10}-\sqrt{6})^2(4-\sqrt{15})=(4+\sqrt{15})(4-\sqrt{15})(4+\sqrt{15}).(16-4\sqrt{15})\)
\(=(16-15)(4+\sqrt{15})(4-\sqrt{15}).4=(16-15)(16-15).4=4\)
Vì $E>0$ nên $E=2$
tính
c. \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
d. \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(c,\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\\ =\sqrt{\sqrt{3^2}+2\sqrt{3}.1+1}+\sqrt{\sqrt{3^2}-2\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)
\(d,\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\\ =\sqrt{\sqrt{5^2}+2.2\sqrt{5}+2^2}-\sqrt{\sqrt{5^2}-2.2\sqrt{5} +2^2}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)
Thực hiện các phép tính sau:
\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
Tính
\(\dfrac{4}{\sqrt{5}-3}\)-\(\dfrac{4}{\sqrt{5}+3}\)
Giải phương trình
\(\sqrt{4x-20}\)-3\(\sqrt{\dfrac{x-5}{9}}\)=\(\sqrt{1-x}\)
\(\dfrac{4}{\sqrt{5}-3}-\dfrac{4}{\sqrt{5}+3}\\ =\dfrac{4\left(\sqrt{5}+3\right)}{5-9}-\dfrac{4\left(\sqrt{5}-3\right)}{5-9}\\ =\dfrac{4\left(\sqrt{5}+3\right)}{-4}-\dfrac{4\left(\sqrt{5}-3\right)}{-4}\\ =-\left(\sqrt{5}+3\right)+\sqrt{5}-3\\ =-\sqrt{5}-3+\sqrt{5}-3\\ =-6\)
ĐK: \(x\ge5;x\le1\)
PT trở thành:
\(\sqrt{4}.\sqrt{x-5}-\dfrac{3\sqrt{x-5}}{3}=\sqrt{1-x}\\ \Leftrightarrow2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\\ \Leftrightarrow\sqrt{x-5}=\sqrt{1-x}\\ \Leftrightarrow x-5=1-x\\ \Leftrightarrow x-5-1+x=0\\ \Leftrightarrow2x-6=0\\ \Leftrightarrow x=3\left(loại\right)\)
Vậy PT vô nghiệm.
`HaNa♬D`
a: \(=\dfrac{4\left(\sqrt{5}+3\right)-4\left(\sqrt{5}-3\right)}{5-9}=\dfrac{4\left(\sqrt{5}+3-\sqrt{5}+3\right)}{-4}=-6\)
b: ĐKXĐ: x-5>=0 và 1-x<=0
=>x>=5 và x<=1
=>Không có x thỏa mãn ĐKXĐ
=>PT vô nghiệm
cho \(x=\frac{\sqrt[3]{5-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}.\)\(\sqrt[3]{8+3\sqrt{5}}\)
\(y=\frac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\frac{2-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt{81}}\)
Tính xy
cho x=3√5−3√5+3√64−12√203√57 .3√8+3√5
y=3√9−√23√3+4√2 +2−93√94√2−√81
Tính xy