Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Công Nhật Tân
Xem chi tiết
Lê Anh Tú
19 tháng 8 2017 lúc 22:02

dãy số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)tính chất tỉ lệ thức

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(đcpm\right)\)

Crazy Boys
Xem chi tiết
Nguyễn Đình Dũng
5 tháng 11 2016 lúc 12:17

Từ \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

<=> (5a+3b)(5c-3d) = (5c+3d)(5a-3b)

<=> 25ac - 15ad + 15bc - 9bd = 25ca - 15cb + 15da - 9db

<=> -15ad + 15bc = -15cb + 15da

<=> ad = bc

<=> \(\frac{a}{b}=\frac{c}{d}\)

Online Math
Xem chi tiết
Lê Anh Duy
28 tháng 3 2019 lúc 12:37

Ta có

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(5a+3b\right)\left(5c-3d\right)=\left(5c+3d\right)\left(5a-3b\right)\)

\(\Rightarrow25ac-15ad+15bc-9bd-25ac+15bc-15ad+9bd=0\)

\(\Rightarrow-30ad+30bc=0\)

\(\Rightarrow-30ad=-30bc\Rightarrow ad=bc\)

hay \(\frac{a}{b}=\frac{c}{d}\) ( ĐPCM)

\(\)

Nguyễn Đình Huy
28 tháng 3 2019 lúc 19:58

Ta có

5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)

⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0

⇒−30ad+30bc=0⇒−30ad+30bc=0

⇒−30ad=−30bc⇒ad=bc⇒−30ad=−30bc⇒ad=bc

hay ab=cdab=cd ( ĐPCM)

Thụy Lâm
18 tháng 6 2019 lúc 11:49

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

35 Tiểu Bảo
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 3 2017 lúc 17:35

Ta có ; \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3b}=\frac{5a-3b}{5c-3b}\)

Nên : \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-4d}\left(đpcm\right)\)

Nguyễn Văn A
Xem chi tiết
Đinh Tuấn Việt
1 tháng 6 2015 lúc 11:24

Từ \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\) => \(\frac{5a}{5c}=\frac{3b}{3d}\) (vì \(\frac{5a}{5c}=\frac{a}{c}\) ; \(\frac{3b}{3d}=\frac{b}{d}\))

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\) (1)

Từ (1) , áp dụng tính chất của tỉ lệ thức ta được :

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) => ĐPCM

 

Kinamoto Sakura
31 tháng 7 2017 lúc 20:34

có!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Easy Steps
5 tháng 10 2017 lúc 19:22

Có violympic lớp 7 rồi á!!!!!!!!!!!!!!!!!!!

Bui Cam Lan Bui
Xem chi tiết
Trịnh Tiến Đức
26 tháng 9 2015 lúc 21:14

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{5a}{5c}=\frac{3b}{3d}=>\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(=>\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(DPCM\right)\)

Trần Thị Loan
26 tháng 9 2015 lúc 21:13

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3b}{3d}=\frac{5a}{5c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{3b}{3d}=\frac{5a}{5c}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

=> \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (điều phải chứng minh)

Nguyen Thi Thanh Thao
Xem chi tiết
Lightning Farron
5 tháng 9 2016 lúc 14:43

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Leftrightarrow\frac{5bk+3b}{5dk+3d}=\frac{5bk-3b}{5dk-3d}\)

Xét VT \(\frac{5bk+3b}{5dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\left(1\right)\)

Xét VP \(\frac{5bk-3b}{5dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\left(2\right)\)

Từ (1) và (2) =>Đpcm

Nguyễn Huy Tú
5 tháng 9 2016 lúc 14:47

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

\(a=bk\)

\(c=dk\)

Ta có:
\(\frac{5a+3b}{5c+3d}=\frac{5bk+3b}{5dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{d}{d}\)  (1)

\(\frac{5a-3b}{5c-3d}=\frac{5bk-3b}{5dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\)  (2)

Từ (1) và (2) suy ra \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\left(đpcm\right)\)

Chang Mai
Xem chi tiết
Thuy Nguyen
24 tháng 5 2016 lúc 15:11

cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk

a. Vế trái =\(\frac{5a+3b}{5a-3b}\)=\(\frac{5bk+3b}{5bk-3b}\)=\(\frac{b\left(5k+3\right)}{b\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(1)

Vế phải =\(\frac{5c+3d}{5c-3d}\)=\(\frac{5dk+3d}{5dk-3d}\)=\(\frac{d\left(5k+3\right)}{d\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(2)

Từ (1) và (2) ta có\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\)

b. Vế trái=\(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7b^2k^2+3b.k.b}{11b^2.k^2-8b^2}\)=\(\frac{b^2.k\left(7k+3\right)}{b^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(1)

Vế phải =\(\frac{7c^2+3cd}{11c^2-8d^2}\)=\(\frac{7d^2k^2+3d.k.d}{11d^2.k^2-8d^2}\)=\(\frac{d^2.k\left(7k+3\right)}{d^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(2)

Từ (1) và (2) ta có: \(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7c^2+3cd}{11c^2-8d^2}\)

Chang Mai
24 tháng 5 2016 lúc 13:21

giups mình với cảm ơn

 

Nguyễn Thùy Duyên
Xem chi tiết
Trần Thanh Phương
18 tháng 8 2018 lúc 10:07

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) => đpcm