Tìm x,y \(\in Z:x+y+z=xyz\)
1, Tìm \(x,y\in Z\): \(xy+\dfrac{x^3+y^3}{3}=2007\)
2, Tìm \(x,y\in Z:19x^2+28y^2=729\)
3, Tìm \(x\in Z:x^4+2x^3+2x^2+x+3\) là SCP
tìm x,y,z:x/z+y+1=z/y+x+1=z/x+y-2
tim cac so nguen x,y,z:x/y+y/z+z/x=y/x+z/y+x/z=x+y+z=3
Tìm x ; y ; z \(\in Z\)
xyz = z ( x+ y + z )
Tìm gtnn của A=(x+y)(y+z) biết x,y,z\(\in\)R và xyz(x+y+z)=1
\(\left(x+y\right)\left(y+z\right)=xy+xz+y^2+yz=y\left(x+y+z\right)+xz\)
\(=y.\frac{1}{xyz}+xz=\frac{1}{xz}+xz\ge2\)
tìm x,y,z:x/5=y/7=z/3và x^2+y^2+z^2=585
Đặt \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=k\)
=>x=5k; y=7k; z=3k
\(x^2+y^2+z^2=585\)
\(\Leftrightarrow25k^2+49k^2+9k^2=585\)
\(\Leftrightarrow k^2=\dfrac{585}{83}\)
Trường hợp 1: \(k=\sqrt{\dfrac{585}{83}}\)
\(\Leftrightarrow x=5\sqrt{\dfrac{585}{83}};y=7\sqrt{\dfrac{585}{83}};z=3\sqrt{\dfrac{585}{83}}\)
Trường hợp 2: \(k=-\sqrt{\dfrac{585}{83}}\)
\(\Leftrightarrow x=-5\sqrt{\dfrac{585}{83}};y=-7\sqrt{\dfrac{585}{83}};z=-3\sqrt{\dfrac{585}{83}}\)
Tìm x,y,z \(\in N\)để
\(\hept{\begin{cases}xyz-x=1945\\xyz-y=1975\\xyz-z=1995\end{cases}}\)
Có ai làm dc ko
Bạn tham khảo:
Giả sử:\(\hept{\begin{cases}xyz-x=1945\left(1\right)\\xyz-y=1975\left(2\right)\\xyz-z=1995\left(3\right)\end{cases}}\)với \(x,y,z\in N\)
Tứ \(\left(1\right)\Rightarrow x\left(yz-1\right)=1945\)là số lẻ \(\Rightarrow x\)lẻ
Từ \(\left(2\right)\Rightarrow y\left(xz-1\right)=1975\)là số lẻ \(\Rightarrow y\)lẻ
Từ \(\left(3\right)\Rightarrow z\left(xy-1\right)=1995\)là số lẻ \(\Rightarrow z\)lẻ
Nên \(x,y,z\)là số lẻ
\(\Rightarrow x,y,z-x\)là số chẵn khác 1945
Vậy không tồn tại \(x,y,z\in N\)thỏa mãn \(\left(1\right),\left(2\right),\left(3\right)\).
Tìm \(x,y,z\in N\)* biết: \(xy+yz+zx=2+xyz\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)